Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-11-2020 | Original Article

An improved density-based adaptive p-spectral clustering algorithm

Journal:
International Journal of Machine Learning and Cybernetics
Authors:
Yanru Wang, Shifei Ding, Lijuan Wang, Ling Ding
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

As a generalization algorithm of spectral clustering, p-spectral clustering has gradually attracted extensive attention of researchers. Gaussian kernel function is generally used in traditional p-spectral clustering to construct the similarity matrix of data. However, the Gaussian kernel function based on Euclidean distance is not effective when the data-set is complex with multiple density peaks or the density distribution is uniform. In order to solve this problem, an improved Density-based adaptive p-spectral clustering algorithm (DAPSC) is proposed, the prior information is considering to adjust the similarity between sample points and strengthen the local correlation between data points. In addition, by combining the density canopy method to update the initial clustering center and the number of clusters, the algorithm sensitivity of the original p-spectral clustering caused by the two is weakened. By experiments on four artificial data-sets and 8F UCI data-sets, we show that the proposed DAPSC has strong adaptability and more accurate compared with the four baseline methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article