Skip to main content
Top
Published in: Wireless Personal Communications 4/2020

18-04-2020

An Improved Genetic with Particle Swarm Optimization Algorithm Based on Ensemble Classification to Predict Protein–Protein Interaction

Authors: P. Lakshmi, D. Ramyachitra

Published in: Wireless Personal Communications | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Protein–protein interaction plays an important role in biological function. Though protein interaction and non-interaction is a broad field, PPI is considered more important than PPNI. The concentration of dataset with PPNI is also used to predict the protein–protein interaction. False negatives of non-interaction data have to be identified in the non-proven negative genetic interactions. A learning approach of ensemble selection is a “build and select” strategy, where multiple classifiers have to be trained. Diversity and accuracy of the multi-classifier have to be selected to find the solution. In this paper, PPNI datasets are identified from PPI dataset. Three levels of development have been considered such as, Dataset construction carried out by Negatome, Random pair and Recombine pair methods. Feature extraction and feature selection performance can be carried out by the way of N-Gram techniques. Ensemble classification is done by utilizing the classifiers such as Support Vector Machine, Decision Tree, Neural Network and Naive Bayes. For the enhanced optimization algorithm expressed through the search operation, Genetic-PSO algorithm is proposed. The result exposes the reduced false negatives with the process of dataset construction and the execution of the random pair dataset effectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shatnawi, M. (2015). Review of Recent Protein-Protein Interaction Techniques, Emerging Trends in Computational biology, Bioinformatics and Systems Biology. Shatnawi, M. (2015). Review of Recent Protein-Protein Interaction Techniques, Emerging Trends in Computational biology, Bioinformatics and Systems Biology.
2.
go back to reference Thanos, C. D., DeLano, W. L., & Wells, J. A. (2006). Hot-spot mimicry of a cytokine receptor by a small molecule. Proceedings of the National academy of Sciences of the United States of America,103(42), 15422–15427.CrossRef Thanos, C. D., DeLano, W. L., & Wells, J. A. (2006). Hot-spot mimicry of a cytokine receptor by a small molecule. Proceedings of the National academy of Sciences of the United States of America,103(42), 15422–15427.CrossRef
3.
go back to reference Agrawal, N. J., Helk, B., & Trout, B. L. (2014). A computational tool to predict the evolutionarily conserved protein–protein interaction hot-spot residues from the structure of the unbound protein. FEBS Letters,588, 326–333.CrossRef Agrawal, N. J., Helk, B., & Trout, B. L. (2014). A computational tool to predict the evolutionarily conserved protein–protein interaction hot-spot residues from the structure of the unbound protein. FEBS Letters,588, 326–333.CrossRef
4.
go back to reference Planas-Iglesias, J., Bonet, J., García-García, J., Marín-López, M. A., Feliu, E., & Oliva, B. (2013). Understanding protein–protein interactions using local structural features. Journal of Molecular Biology,425, 1210–1224.CrossRef Planas-Iglesias, J., Bonet, J., García-García, J., Marín-López, M. A., Feliu, E., & Oliva, B. (2013). Understanding protein–protein interactions using local structural features. Journal of Molecular Biology,425, 1210–1224.CrossRef
5.
go back to reference Wu, S., Shao, F., Sun, R., Sui, Y., Wang, Y., & Wang, J. (2014). Analysis of human genes with protein–protein interaction network for detecting disease genes. Physica A,398, 217–228.CrossRef Wu, S., Shao, F., Sun, R., Sui, Y., Wang, Y., & Wang, J. (2014). Analysis of human genes with protein–protein interaction network for detecting disease genes. Physica A,398, 217–228.CrossRef
6.
go back to reference Peleg, O., Choi, J.-M., & Shakhnovich, E. I. (2014). Evolution of specificity in protein-protein interactions. Biophysical Journal,107, 1686–1696.CrossRef Peleg, O., Choi, J.-M., & Shakhnovich, E. I. (2014). Evolution of specificity in protein-protein interactions. Biophysical Journal,107, 1686–1696.CrossRef
7.
go back to reference Sun, J.-T., Ao, B., Zhang, S., Bing, Z., & Yang, L. (2014). Evolving protein protein interaction networks: A model based on duplication and mutation at different rates. Journal of Theoretical Biology,350, 32–36.MathSciNetCrossRef Sun, J.-T., Ao, B., Zhang, S., Bing, Z., & Yang, L. (2014). Evolving protein protein interaction networks: A model based on duplication and mutation at different rates. Journal of Theoretical Biology,350, 32–36.MathSciNetCrossRef
8.
go back to reference Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., et al. (2014). Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing,218, 131–138.CrossRef Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., et al. (2014). Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing,218, 131–138.CrossRef
9.
go back to reference Qin, H., Lu, H. H. S., Wu, W. B., & Li, W.-H. (2003). Evolution of the yeast protein interaction network. Proceedings of the National academy of Sciences of the United States of America,100(22), 12820–12824.CrossRef Qin, H., Lu, H. H. S., Wu, W. B., & Li, W.-H. (2003). Evolution of the yeast protein interaction network. Proceedings of the National academy of Sciences of the United States of America,100(22), 12820–12824.CrossRef
10.
go back to reference Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). Acomprehensive two-hybridanalysistoexploretheyeastproteininteractome. Proceedings of the National Academy of Sciences,98(8), 4569–4574.CrossRef Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). Acomprehensive two-hybridanalysistoexploretheyeastproteininteractome. Proceedings of the National Academy of Sciences,98(8), 4569–4574.CrossRef
11.
go back to reference Anne-Claude, G., Markus, B., Roland, K., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,415(6868), 141–147.CrossRef Anne-Claude, G., Markus, B., Roland, K., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,415(6868), 141–147.CrossRef
12.
go back to reference Yuen, H., Albrecht, G., Adrian, H., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,415(6868), 180–183.CrossRef Yuen, H., Albrecht, G., Adrian, H., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,415(6868), 180–183.CrossRef
13.
go back to reference De Las Rivas, J., & Fontanillo, C. (2012). Protein–protein interaction networks: Unravelling the wiring of molecular machines within the cell. Briefings in Functional Genomics:ls036. De Las Rivas, J., & Fontanillo, C. (2012). Protein–protein interaction networks: Unravelling the wiring of molecular machines within the cell. Briefings in Functional Genomics:ls036.
14.
go back to reference Liu, G.-H., Shen, H.-B., & Yu, D.-J. (2016). Prediction of protein–protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures. Journal of Membrane Biology,249, 141–153.CrossRef Liu, G.-H., Shen, H.-B., & Yu, D.-J. (2016). Prediction of protein–protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures. Journal of Membrane Biology,249, 141–153.CrossRef
15.
go back to reference Hayat, M., & Khan, A. (2011). Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Journal of Theoretical Biology,271, 10–17.CrossRef Hayat, M., & Khan, A. (2011). Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Journal of Theoretical Biology,271, 10–17.CrossRef
16.
go back to reference Hayat, M., & Khan, A. (2013). WRF-TMH: Predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids. AminoAcids,44, 1317–1328. Hayat, M., & Khan, A. (2013). WRF-TMH: Predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids. AminoAcids,44, 1317–1328.
17.
go back to reference Hayat, M., & Khan, A. (2013). Prediction of membrane protein types using pseudo-aminoacid composition and ensemble classification. International Journal of Comput and Electrical Engineering,5, 456.CrossRef Hayat, M., & Khan, A. (2013). Prediction of membrane protein types using pseudo-aminoacid composition and ensemble classification. International Journal of Comput and Electrical Engineering,5, 456.CrossRef
20.
go back to reference Torchala, M., Moal, I. H., Chaleil, R. A. G., Fernandez-Recio, J., & Bates, P. A. (2013). Swarm-Dock: A server for flexible protein–protein docking. Bioinformatics,29, 807–809.CrossRef Torchala, M., Moal, I. H., Chaleil, R. A. G., Fernandez-Recio, J., & Bates, P. A. (2013). Swarm-Dock: A server for flexible protein–protein docking. Bioinformatics,29, 807–809.CrossRef
21.
go back to reference Ghoorah, A. W., Devignes, M.-D., Smaïl-Tabbone, M., & Ritchie, D. W. (2011). Spatial clustering of protein binding sites for template based protein docking. Bioinformatics,27, 2820–2827.CrossRef Ghoorah, A. W., Devignes, M.-D., Smaïl-Tabbone, M., & Ritchie, D. W. (2011). Spatial clustering of protein binding sites for template based protein docking. Bioinformatics,27, 2820–2827.CrossRef
22.
go back to reference Tuncbag, N., Gursoy, A., & Keskin, O. (2013). Identification of computational hotspots in protein interfaces: Combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics,25, 1513–1520.CrossRef Tuncbag, N., Gursoy, A., & Keskin, O. (2013). Identification of computational hotspots in protein interfaces: Combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics,25, 1513–1520.CrossRef
23.
go back to reference Grove, L. E., Hall, D. R., Beglov, D., Vajda, S., Kozakov, D., & Flex, F. T. (2013). Accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics,29, 1218–1219.CrossRef Grove, L. E., Hall, D. R., Beglov, D., Vajda, S., Kozakov, D., & Flex, F. T. (2013). Accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics,29, 1218–1219.CrossRef
24.
go back to reference Navlakha, S., & Kingsford, C. (2010). The power of protein interaction networks for associating genes with diseases. Bioinformatics,26, 1057–1063.CrossRef Navlakha, S., & Kingsford, C. (2010). The power of protein interaction networks for associating genes with diseases. Bioinformatics,26, 1057–1063.CrossRef
25.
go back to reference Mørk, S., Pletscher-Frankild, S., PallejaCaro, A., Gorodkin, J., & Jensen, L. J. (2014). Protein- driven inference of miRNA-disease associations. Bioinformatics,30, 392–397.CrossRef Mørk, S., Pletscher-Frankild, S., PallejaCaro, A., Gorodkin, J., & Jensen, L. J. (2014). Protein- driven inference of miRNA-disease associations. Bioinformatics,30, 392–397.CrossRef
26.
go back to reference Zinzalla, G., & Thurston, D. E. (2009). Targeting protein–protein interactions for therapeutic intervention: A challenge for the future. Future Medicinal Chemistry,1, 65–93.CrossRef Zinzalla, G., & Thurston, D. E. (2009). Targeting protein–protein interactions for therapeutic intervention: A challenge for the future. Future Medicinal Chemistry,1, 65–93.CrossRef
27.
go back to reference Johnson, D. K., & Karanicolas, J. (2019). Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Computational Biology,9(3), e1002951.CrossRef Johnson, D. K., & Karanicolas, J. (2019). Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Computational Biology,9(3), e1002951.CrossRef
28.
go back to reference Mignani, S., ElKazzouli, S., Bousmina, M. M., & Majoral, J.-P. (2014). Den drimer space exploration: An assessment of dendrimers/dendritic scaffolding as inhibitors of protein–protein interactions, a potential new area of pharmaceutical development. Chemical Reviews,114, 1327–1342.CrossRef Mignani, S., ElKazzouli, S., Bousmina, M. M., & Majoral, J.-P. (2014). Den drimer space exploration: An assessment of dendrimers/dendritic scaffolding as inhibitors of protein–protein interactions, a potential new area of pharmaceutical development. Chemical Reviews,114, 1327–1342.CrossRef
29.
go back to reference Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., et al. (2016). Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing,218, 131–138.CrossRef Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., et al. (2016). Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing,218, 131–138.CrossRef
30.
go back to reference Shin, W.-H., Christoffer, C. W., & Kihara, D. (2017). In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods,131, 22–32.CrossRef Shin, W.-H., Christoffer, C. W., & Kihara, D. (2017). In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods,131, 22–32.CrossRef
31.
go back to reference Zhang, J., Yang, H., Song, H., & Zhang, Y. (2017). An improved archaeology algorithm based on integrated multi-source. Biological Information for Yeast Protein Interaction Network, IEEE Access Zhang, J., Yang, H., Song, H., & Zhang, Y. (2017). An improved archaeology algorithm based on integrated multi-source. Biological Information for Yeast Protein Interaction Network, IEEE Access
32.
go back to reference Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guénoche, A., & Jacq, B. (2003). Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology,5, R6.CrossRef Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guénoche, A., & Jacq, B. (2003). Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology,5, R6.CrossRef
33.
go back to reference Tahir, M., & Hayat, M. (2017). Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artificial Intelligence in Medicine,78, 61–71.CrossRef Tahir, M., & Hayat, M. (2017). Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artificial Intelligence in Medicine,78, 61–71.CrossRef
34.
go back to reference Jia, J., Liu, Z., Xiao, X., Liu, B., & Chou, K.-C. (2014). Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. Journal of Biomolecular Structure and Dynamics, ISSN: 0739-1102 (Print) 1538-0254 (Online). Jia, J., Liu, Z., Xiao, X., Liu, B., & Chou, K.-C. (2014). Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. Journal of Biomolecular Structure and Dynamics, ISSN: 0739-1102 (Print) 1538-0254 (Online).
35.
go back to reference Wei, Z.-S., Han, K., Yang, J.-Y., Shen, H.-B., & Yu, D.-J. (2016). Protein–protein interaction sites prediction by ensembling SVM and sample weighted random forests. Neuro Computing,193, 201–212. Wei, Z.-S., Han, K., Yang, J.-Y., Shen, H.-B., & Yu, D.-J. (2016). Protein–protein interaction sites prediction by ensembling SVM and sample weighted random forests. Neuro Computing,193, 201–212.
36.
go back to reference Zhanga, L., Yua, G., Xiab, D., & Wang, J. (2018). Protein-protein interactions prediction based on ensemble deep neural networks. Neurocomputing,S0925–2312(18), 30633–30637. Zhanga, L., Yua, G., Xiab, D., & Wang, J. (2018). Protein-protein interactions prediction based on ensemble deep neural networks. Neurocomputing,S0925–2312(18), 30633–30637.
37.
go back to reference Hu, L., & Chan, K. C. C. (2016). Extracting coevolutionary features in protein sequences for predicting protein-protein interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2520923. Hu, L., & Chan, K. C. C. (2016). Extracting coevolutionary features in protein sequences for predicting protein-protein interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2520923.
38.
go back to reference Qiao, Y., Xiong, Y., Gao, H., Zhu, X., & Chen, P. (2018). Protein-protein interface hot spots prediction based on a hybrid feature selection strategy. BMC Bioinformatics,19, 14.CrossRef Qiao, Y., Xiong, Y., Gao, H., Zhu, X., & Chen, P. (2018). Protein-protein interface hot spots prediction based on a hybrid feature selection strategy. BMC Bioinformatics,19, 14.CrossRef
39.
go back to reference Zahiri, J., Yaghoubi, O., Mohammad-Noori, M., Ebrahimpour, R., & Masoudi-Nejad, A. (2013). PPIevo: Protein–protein interaction prediction from PSSM based evolutionary information. Genomics,102, 237–242.CrossRef Zahiri, J., Yaghoubi, O., Mohammad-Noori, M., Ebrahimpour, R., & Masoudi-Nejad, A. (2013). PPIevo: Protein–protein interaction prediction from PSSM based evolutionary information. Genomics,102, 237–242.CrossRef
40.
go back to reference Karthik, M.N., & Davis, M. (2012). Search Using N-gram Technique Based Statistical Analysis for Knowledge Extraction in Case Based Reasoning Systems. https://arxiv.org/ftp/cs/papers/0407/0407009.pdf Karthik, M.N., & Davis, M. (2012). Search Using N-gram Technique Based Statistical Analysis for Knowledge Extraction in Case Based Reasoning Systems. https://​arxiv.​org/​ftp/​cs/​papers/​0407/​0407009.​pdf
41.
go back to reference Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). Agenetic algorithm GA) based load balancing strategy for cloudcomputing. Procedia Technology,10, 340–347.CrossRef Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., & Dam, S. (2013). Agenetic algorithm GA) based load balancing strategy for cloudcomputing. Procedia Technology,10, 340–347.CrossRef
42.
go back to reference Zhang, Z., & Zhang, X. (2010). A load balancing mechanism basedon ant colony and complex network theory in open cloud computing federation. In Proceedings of the 2nd International Conference on Industrial Mechatronics and Automation (ICIMA’10), vol. 2, pp. 240–243. Zhang, Z., & Zhang, X. (2010). A load balancing mechanism basedon ant colony and complex network theory in open cloud computing federation. In Proceedings of the 2nd International Conference on Industrial Mechatronics and Automation (ICIMA’10), vol. 2, pp. 240–243.
43.
go back to reference Braun, T. D., Siegel, H. J., Beck, N., et al. (2001). A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing,61(6), 810–837.CrossRef Braun, T. D., Siegel, H. J., Beck, N., et al. (2001). A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computing,61(6), 810–837.CrossRef
44.
go back to reference Alabdulrahman, R. (2014), A comparative study of ensemble active learning, Thesis, University of Ottawa. Alabdulrahman, R. (2014), A comparative study of ensemble active learning, Thesis, University of Ottawa.
45.
go back to reference Read, J., Bifet, A., Pfahringer, B., & Holmes, G. (2012). Batch-incremental versus instance-incremental learning in dynamic and evolving data. Advances in Intelligent Data Analysis XI , Springer (pp. 313–323) Read, J., Bifet, A., Pfahringer, B., & Holmes, G. (2012). Batch-incremental versus instance-incremental learning in dynamic and evolving data. Advances in Intelligent Data Analysis XI , Springer (pp. 313–323)
46.
go back to reference Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning Tools and techniques: Morgan Kaufmann. Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning Tools and techniques: Morgan Kaufmann.
47.
go back to reference Ko, A.H.-R., Sabourin, R., & de Souza Britto, Jr, A. (2007). A new dynamic ensemble selection method for numeral recognition Multiple Classifier Systems (pp. 431–439): Springer: Berlin. Ko, A.H.-R., Sabourin, R., & de Souza Britto, Jr, A. (2007). A new dynamic ensemble selection method for numeral recognition Multiple Classifier Systems (pp. 431–439): Springer: Berlin.
48.
go back to reference Mazid, M. M., Ali, S., & Tickle, K. S. (2010). Improved C4. 5 algorithm for rule based classification. Paper presented at the proceedings of the 9th WSEAS international conference on Artificial intelligence, knowledge Engineering and data bases. Mazid, M. M., Ali, S., & Tickle, K. S. (2010). Improved C4. 5 algorithm for rule based classification. Paper presented at the proceedings of the 9th WSEAS international conference on Artificial intelligence, knowledge Engineering and data bases.
49.
go back to reference Melville, P., & Mooney, R. J. (2003). Constructing diverse classifier ensembles using artificial training examples. Paper presented at the IJCAI. Melville, P., & Mooney, R. J. (2003). Constructing diverse classifier ensembles using artificial training examples. Paper presented at the IJCAI.
Metadata
Title
An Improved Genetic with Particle Swarm Optimization Algorithm Based on Ensemble Classification to Predict Protein–Protein Interaction
Authors
P. Lakshmi
D. Ramyachitra
Publication date
18-04-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07296-0

Other articles of this Issue 4/2020

Wireless Personal Communications 4/2020 Go to the issue