Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 6/2020

09-04-2020

An In-Situ Diagnostic Study of Electromagnetic Stirring Effects on Peritectic Solidification Kinetics for Containerlessly Processed Liquid Fe-Ti Alloys

Authors: Y. H. Wu, J. Chang, L. Hu, S. Sha, X. Cai, S. S. Xu, B. Wei

Published in: Metallurgical and Materials Transactions A | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electromagnetic stirring (EMS) effects on peritectic solidification kinetics of undercooled liquid Fe-Ti alloys have been investigated by electrostatic levitation(ESL) and electromagnetic levitation (EML) methods assisted with in-situ diagnostic techniques. The high-sensitivity pyrometer and high-speed camera were employed to monitor the complete solidification process for levitated liquid Fe59Ti41 alloy in undercooling ΔT range of 0 K to 213 K. Theoretical calculations showed that there existed EMS inside electromagnetically levitated alloy melts, and the internal fluid flow dynamics depended on levitation height and melt undercooling. As ΔT rised, the primary dendrite growth velocity V increased according to a power function. Meanwhile, the peritectic recalescence degree ΔTpr and the peritectic recalescence rate Rpr were enhanced gradually, whereas the peritectic recalescence time tpr and the peritectic solidification time tps were shortened linearly. The comparison between ESL and EML experiments revealed that the EMS resulted in four respects of influences including (1) dendrite growth effect, (2) concentration field effect, (3) peritectic reaction effect and (4) microstructure evolution effect. In contrast with ESL, the V of Fe50Ti50 alloy measured by EML was slightly larger at small undercoolings, indicating the EMS affected dendrite growth processes. The solute concentration \( C_{\text{L}}^{*} \) around primary Fe2Ti dendrites for electrostatically levitated liquid Fe59Ti41 alloy deviated far away from original composition, while the EMS homogenized concentration field and the \( C_{\text{L}}^{*} \) variation was weak under EML condition. Both tpr and tps in the absence of EMS were longer that those in the presence of EMS, and it was demonstrated that the EMS accelerated peritectic reaction. Except for microstructure refinement, the EMS modulated the microstructure type and also changed the faceted-growth mode of intermetallic compound phases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference F.P. Dai, Y.H. Wu, W.L. Wang, and B. Wei: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 5478-87.CrossRef F.P. Dai, Y.H. Wu, W.L. Wang, and B. Wei: Metall. Mater. Trans. A, 2018, Vol. 49A, pp. 5478-87.CrossRef
2.
go back to reference W.J. Boettinger, D.E. Newbury, N.W.M. Ritchie, M.E. Williams, U.R. Kattner, E.A. Lass, K.-W. Moon, M.B. Katz, and J.H. Perepezko: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 772-88.CrossRef W.J. Boettinger, D.E. Newbury, N.W.M. Ritchie, M.E. Williams, U.R. Kattner, E.A. Lass, K.-W. Moon, M.B. Katz, and J.H. Perepezko: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 772-88.CrossRef
3.
go back to reference J. Valloton, J.A. Dantzig, M. Plapp, and M. Rappaz: Acta Mater., 2013, Vol. 61, pp. 5549-60.CrossRef J. Valloton, J.A. Dantzig, M. Plapp, and M. Rappaz: Acta Mater., 2013, Vol. 61, pp. 5549-60.CrossRef
4.
5.
go back to reference P. Peng, X.Z. Li, Y.Q. Su, and J.J. Guo: Appl. Phys. Lett., 2016, vol. 109, art. no. 021603.CrossRef P. Peng, X.Z. Li, Y.Q. Su, and J.J. Guo: Appl. Phys. Lett., 2016, vol. 109, art. no. 021603.CrossRef
6.
go back to reference M. Leonhardt, W. Löser, and H.G. Lindenkreuz: Acta Mater., 2002, Vol. 50, pp. 725-34.CrossRef M. Leonhardt, W. Löser, and H.G. Lindenkreuz: Acta Mater., 2002, Vol. 50, pp. 725-34.CrossRef
7.
go back to reference P. Lü, H.P. Wang, and B. Wei: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 789-803.CrossRef P. Lü, H.P. Wang, and B. Wei: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 789-803.CrossRef
8.
go back to reference M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Acta Mater., 2009, Vol. 57, pp. 941-71.CrossRef M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Acta Mater., 2009, Vol. 57, pp. 941-71.CrossRef
9.
go back to reference D.A. Basha, N. Ravishankar, and K. Chattopadhyay: Scripta Mater., 2018, Vol. 143, pp. 68-71.CrossRef D.A. Basha, N. Ravishankar, and K. Chattopadhyay: Scripta Mater., 2018, Vol. 143, pp. 68-71.CrossRef
10.
11.
go back to reference S. Abraham, R. Bodnar, J. Lonnqvist, F. Shahbazian, A. Lagerstedt, and M. Andersson: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 2259-71.CrossRef S. Abraham, R. Bodnar, J. Lonnqvist, F. Shahbazian, A. Lagerstedt, and M. Andersson: Metall. Mater. Trans. A, 2019, Vol. 50A, pp. 2259-71.CrossRef
12.
go back to reference D.M. Liu, X.Z. Li, Y.Q. Su, P. Peng, L.S. Luo, J.J. Guo, and H.Z. Fu: Acta Mater., 2012, Vol. 60, pp. 2679-88.CrossRef D.M. Liu, X.Z. Li, Y.Q. Su, P. Peng, L.S. Luo, J.J. Guo, and H.Z. Fu: Acta Mater., 2012, Vol. 60, pp. 2679-88.CrossRef
13.
go back to reference A. Ludwig, and J. Mogeritsch: J. Cryst. Growth, 2016, Vol. 455, pp. 99-104.CrossRef A. Ludwig, and J. Mogeritsch: J. Cryst. Growth, 2016, Vol. 455, pp. 99-104.CrossRef
14.
go back to reference Y.H. Wu, J. Chang, W.L. Wang, and B. Wei: Appl. Phys. Lett., 2016, vol. 109, art. no. 154101.CrossRef Y.H. Wu, J. Chang, W.L. Wang, and B. Wei: Appl. Phys. Lett., 2016, vol. 109, art. no. 154101.CrossRef
15.
go back to reference C.J. Todaro, M.A. Easton, D. Qiu, G. Wang, D.H. Stjohn, and M. Qian: Metall. Mater. Trans. A, 2017, Vol. 48A, pp. 5579-90.CrossRef C.J. Todaro, M.A. Easton, D. Qiu, G. Wang, D.H. Stjohn, and M. Qian: Metall. Mater. Trans. A, 2017, Vol. 48A, pp. 5579-90.CrossRef
16.
go back to reference S. Akamatsu, and M. Plapp: Curr. Opin. Solid St. M., 2016, Vol. 20, pp. 46-54.CrossRef S. Akamatsu, and M. Plapp: Curr. Opin. Solid St. M., 2016, Vol. 20, pp. 46-54.CrossRef
17.
go back to reference S.Y. Pan, M.F. Zhu, and M. Rettenmayr: Acta Mater., 2017, Vol. 132, pp. 565-75.CrossRef S.Y. Pan, M.F. Zhu, and M. Rettenmayr: Acta Mater., 2017, Vol. 132, pp. 565-75.CrossRef
18.
go back to reference S. Jeon, D.-H. Kang, Y.H, Lee, S. Lee, and G.W. Lee: J. Chem. Phys., 2016, vol. 145, art. no. 174504.CrossRef S. Jeon, D.-H. Kang, Y.H, Lee, S. Lee, and G.W. Lee: J. Chem. Phys., 2016, vol. 145, art. no. 174504.CrossRef
19.
go back to reference D.G. Quirinale, G.E. Rustan, A. Kreyssig, and A.I. Goldman: Appl. Phys. Lett., 2015, vol. 106, art. no. 241906.CrossRef D.G. Quirinale, G.E. Rustan, A. Kreyssig, and A.I. Goldman: Appl. Phys. Lett., 2015, vol. 106, art. no. 241906.CrossRef
20.
go back to reference M.L. Johnson, P.C. Gibbons, A.J. Vogt, and K.F. Kelton: J. Alloy. Compd., 2017, Vol. 725, pp. 1217-22.CrossRef M.L. Johnson, P.C. Gibbons, A.J. Vogt, and K.F. Kelton: J. Alloy. Compd., 2017, Vol. 725, pp. 1217-22.CrossRef
21.
go back to reference S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, and B. Wei: Acta Mater., 2014, Vol. 69, 355-64.CrossRef S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, and B. Wei: Acta Mater., 2014, Vol. 69, 355-64.CrossRef
22.
go back to reference B. Bochtler, O. Gross, I. Gallino, and R. Busch: Acta Mater., 2016, Vol. 118, pp. 129-39.CrossRef B. Bochtler, O. Gross, I. Gallino, and R. Busch: Acta Mater., 2016, Vol. 118, pp. 129-39.CrossRef
23.
go back to reference S.J. McCormack, R.J. Weber, and W.M. Kriven: Acta Mater., 2018, Vol. 161, pp. 127-37.CrossRef S.J. McCormack, R.J. Weber, and W.M. Kriven: Acta Mater., 2018, Vol. 161, pp. 127-37.CrossRef
24.
go back to reference L. Cox, A. Croxford, B.W. Drinkwater, and A. Marzo: Appl. Phys. Lett., 2018, vol. 113, art. no. 054101.CrossRef L. Cox, A. Croxford, B.W. Drinkwater, and A. Marzo: Appl. Phys. Lett., 2018, vol. 113, art. no. 054101.CrossRef
25.
26.
27.
go back to reference E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant: Acta Mater., 2014, Vol. 70, pp. 228-39.CrossRef E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant: Acta Mater., 2014, Vol. 70, pp. 228-39.CrossRef
28.
go back to reference S. Agrawal, A.K. Ghose, and I. Chakrabarty: Mater. Design, 2017, Vol. 113, pp. 195-206.CrossRef S. Agrawal, A.K. Ghose, and I. Chakrabarty: Mater. Design, 2017, Vol. 113, pp. 195-206.CrossRef
29.
go back to reference I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins: J. Cryst. Growth, 2014, Vol. 402, pp. 230-33.CrossRef I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins: J. Cryst. Growth, 2014, Vol. 402, pp. 230-33.CrossRef
30.
go back to reference Y.H. Zhang, Y.Y. Xu, C.Y. Ye, C. Sheng, J. Sun, G. Wang, X.C. Miao, C.J. Song, and Q.J. Zhai: Sci. Rep., 2018, vol. 8, art. no. 3242.CrossRef Y.H. Zhang, Y.Y. Xu, C.Y. Ye, C. Sheng, J. Sun, G. Wang, X.C. Miao, C.J. Song, and Q.J. Zhai: Sci. Rep., 2018, vol. 8, art. no. 3242.CrossRef
31.
32.
33.
go back to reference S. Spitans, E. Baake, B. Nacke, and A. Jakovics: Metall. Mater. Trans. B, 2016, Vol. 47, pp. 522-36.CrossRef S. Spitans, E. Baake, B. Nacke, and A. Jakovics: Metall. Mater. Trans. B, 2016, Vol. 47, pp. 522-36.CrossRef
34.
go back to reference A. Kermanpur, M. Jafari, and M. Vaghayenegar: J. Mater. Process Tech., 2011, Vol. 211, pp. 222-9.CrossRef A. Kermanpur, M. Jafari, and M. Vaghayenegar: J. Mater. Process Tech., 2011, Vol. 211, pp. 222-9.CrossRef
35.
go back to reference X. Cai, H.P. Wang, P. Lü, and B. Wei: Metall. Mater. Trans. B, 2018, Vol. 49, 2252-60.CrossRef X. Cai, H.P. Wang, P. Lü, and B. Wei: Metall. Mater. Trans. B, 2018, Vol. 49, 2252-60.CrossRef
36.
go back to reference F. Lin, and W.Y. Shi: Metall. Mater. Trans. B, 2015, Vol. 46, pp. 1895-901. F. Lin, and W.Y. Shi: Metall. Mater. Trans. B, 2015, Vol. 46, pp. 1895-901.
37.
go back to reference N. Shevchenko, O. Roshchupkina, O. Sokolova, and S. Eckert: J. Cryst. Growth, 2015, Vol. 417, pp. 1-8.CrossRef N. Shevchenko, O. Roshchupkina, O. Sokolova, and S. Eckert: J. Cryst. Growth, 2015, Vol. 417, pp. 1-8.CrossRef
38.
go back to reference D.K. Sun, M.F. Zhu, S.Y. Pan, and D. Raabe: Acta Mater., 2009, Vol. 57, 1755-67.CrossRef D.K. Sun, M.F. Zhu, S.Y. Pan, and D. Raabe: Acta Mater., 2009, Vol. 57, 1755-67.CrossRef
39.
go back to reference C.J. Smithells, Metals Reference Book, sixth ed., Butterworth., London, 1984. C.J. Smithells, Metals Reference Book, sixth ed., Butterworth., London, 1984.
Metadata
Title
An In-Situ Diagnostic Study of Electromagnetic Stirring Effects on Peritectic Solidification Kinetics for Containerlessly Processed Liquid Fe-Ti Alloys
Authors
Y. H. Wu
J. Chang
L. Hu
S. Sha
X. Cai
S. S. Xu
B. Wei
Publication date
09-04-2020
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 6/2020
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05745-w

Other articles of this Issue 6/2020

Metallurgical and Materials Transactions A 6/2020 Go to the issue

Premium Partners