Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

An inequality for covariance with applications

Authors: Zhefei He, Mingjin Wang

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

The present paper establishes a new inequality for the covariance of a random variable, which involves functions with bounded derivatives. Some Chebyshev type integral inequalities are given as applications of the new inequality.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have equally made contributions. All authors read and approved the final manuscript.

1 Introduction

There is an important field in the theory of inequalities which involves two kinds of special inequalities. One is based on the functions with bounded derivatives or of Ostrowski type, which is successfully applied in probability theory, mathematical statistics, information theory, numerical integration, and integral operator theory. A chapter in [1] is devoted to this kind of inequalities. Another field is concerned with the inequalities with the moments of random variables; see [28]. By using this kind of Ostrowski type inequalities, we can get various tight bounds with the moments of random variables defined on some finite interval. There are numerous works available in the literature.
In this paper, we give an inequality for covariance involving functions with bounded derivatives. As applications of the inequality, we obtain some new inequalities similar to the Čebyšev integral inequality.
We assume throughout the paper that ξ is a random variable having the cumulative distributing function F. By Eξ we denote the expectation of ξ defined by
$$ \mathrm{E}\xi= \int_{-\infty}^{\infty}t\,dF(t), $$
(1.1)
by Dξ the variance of ξ defined by
$$ \mathrm{D}\xi=\mathrm{E}(\xi-\mathrm{E}\xi)^{2}, $$
(1.2)
and by \(\operatorname {Cov}(\xi,\eta)\) the covariance of two random variables ξ, η defined by
$$ \operatorname {Cov}(\xi,\eta)=\mathrm{E}(\xi-\mathrm{E}\xi) (\eta-\mathrm{E}\eta). $$
(1.3)
We often use the following formula to compute \(\operatorname {Cov}(\xi,\eta)\):
$$ \operatorname {Cov}(\xi,\eta)=\mathrm{E}(\xi\eta)-\mathrm{E}\xi \mathrm{E}\eta. $$
(1.4)

2 A new random inequality

This paper gives the following new inequality for covariance involving functions with bounded derivatives.
Theorem 2.1
Assume that two functions \(f,g:[a,b]\rightarrow R\) are continuous in \([a,b]\) and differentiable in \((a,b)\) whose derivatives \(f',g':(a,b)\rightarrow R\) are bounded in \((a,b)\); if ξ is a random variable which has finite expected value Eξ and variance Dξ. Then one has
$$ \bigl\vert \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr)\bigr\vert \leq 2 \bigl\Vert f'\bigr\Vert _{\infty}\bigl\Vert g' \bigr\Vert _{\infty}\mathrm{D}\xi, $$
(2.1)
where a is a real or −∞; b is a real or +∞ and
$$ \bigl\Vert f'\bigr\Vert _{\infty}=\sup _{t\in (a,b)}\bigl\vert f'(t)\bigr\vert < \infty, \qquad \bigl\Vert g'\bigr\Vert _{\infty}=\sup_{t\in (a,b)} \bigl\vert g'(t)\bigr\vert < \infty. $$
(2.2)
Proof
Under the conditions of the theorem, since \(f(\xi)\) is bounded, the expected value \(\mathrm{E}f(\xi)\) exists. Applying the Lagrange mean theorem, one can get
$$\begin{aligned} \bigl[f(x)-\mathrm{E}f(\xi)\bigr]^{2} =& \mathrm{E}^{2}\bigl[f(x)-f(\xi)\bigr] \\ =&\mathrm{E}^{2}\bigl[f'\bigl(\xi+\theta(x- \xi)\bigr) (x-\xi)\bigr] \\ \leq&\bigl\Vert f'\bigr\Vert _{\infty}^{2} \mathrm{E}^{2}\vert x-\xi \vert \leq\bigl\Vert f'\bigr\Vert _{\infty}^{2}\mathrm{E}(x-\xi)^{2} \\ =&\bigl\Vert f'\bigr\Vert _{\infty}^{2} \bigl[(x-\mathrm{E}\xi)^{2}+D\xi \bigr], \end{aligned}$$
(2.3)
where the parameter \(0\leq \theta \leq 1\) is not a constant but depends on x, ξ, and \(a\leq x\leq b\). Letting \(x=\xi\) in inequality (2.3) and then taking the expectation to both sides of the inequality gives
$$\begin{aligned} \mathrm{E}\bigl[f(\xi)-Ef(\xi)\bigr]^{2}\leq \bigl\Vert f'\bigr\Vert _{\infty}^{2} \bigl[E(\xi-E \xi)^{2}+D\xi \bigr] =2 \bigl\Vert f'\bigr\Vert _{\infty}^{2}\mathrm{D}\xi. \end{aligned}$$
(2.4)
That is,
$$\begin{aligned} \mathrm{D}f(\xi)\leq 2\bigl\Vert f'\bigr\Vert _{\infty}^{2}\mathrm{D}\xi. \end{aligned}$$
(2.5)
Similarly we have
$$\begin{aligned} \mathrm{D}g(\xi)\leq 2\bigl\Vert g'\bigr\Vert _{\infty}^{2}\mathrm{D}\xi. \end{aligned}$$
(2.6)
Consequently,
$$ \bigl\vert \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr)\bigr\vert \leq \sqrt{ \mathrm{D}f(\xi)\mathrm{D}g(\xi)}\leq 2 \bigl\Vert f'\bigr\Vert _{\infty}\bigl\Vert g'\bigr\Vert _{\infty}\mathrm{D} \xi. $$
(2.7)
Thus, the inequality is derived. □

3 Some applications

In the following section, we will discuss some applications as regards the inequality (2.1). In fact, if the random variable ξ in (2.1) has a certain distribution, we can derive a corresponding Čebyšev type inequality. At first, we show the famous Čebyšev integral inequality [9].
Let us consider two functions \(f,g:[a,b]\rightarrow R\) are continuous in \([a,b]\) and differentiable in \((a,b)\) whose derivatives \(f',g':(a,b)\rightarrow R\) are bounded in \((a,b)\). Then
$$ \bigl\vert T(f,g)\bigr\vert \leq \frac{1}{12}(b-a)^{2} \bigl\Vert f'\bigr\Vert _{\infty}\bigl\Vert g'\bigr\Vert _{\infty}, $$
(3.1)
for all \(x\in [a,b]\), where
$$ T(f,g)=\frac{1}{b-a} \int_{a}^{b}f(x)g(x)\,dx-\frac{1}{b-a} \int_{a}^{b}f(x)\,dx\cdot \frac{1}{b-a} \int_{a}^{b}g(x)\,dx. $$
(3.2)
In 1935, Grüss showed that [10]
$$ \bigl\vert T(f,g)\bigr\vert \leq \frac{1}{4}(M-m) (N-n), $$
(3.3)
if M, m, N, n are real numbers which satisfy \(-\infty< m\leq f(x)\leq M<+\infty\), \(-\infty< n\leq g(x)\leq N<+\infty\) for all \(x\in [a,b]\). Moreover, 1/4 is the best possible constant.
Over the years, the Čebyšev integral inequality has evoked the interest of several researchers who showed new proofs, and extended and innovated the inequality. See e.g. [9, 1116] and the references given therein.
As the first application of the inequality (2.1), let ξ have uniform distribution in \([a,b]\), then we have the inequality as follows.
Theorem 3.1
Let \(f,g:[a,b]\rightarrow R\) be continuous in \([a,b]\) and differentiable in \((a,b)\) whose derivatives \(f',g':(a,b)\rightarrow R\) are bounded in \((a,b)\). Then
$$ \bigl\vert T(f,g)\bigr\vert \leq \frac{1}{6}(b-a)^{2} \bigl\Vert f'\bigr\Vert _{\infty}\bigl\Vert g'\bigr\Vert _{\infty}. $$
(3.4)
Proof
Let ξ be a random variable which possesses the uniform distribution \(u[a,b]\). So, it has the following probability density function:
$$ \varphi(x)=\textstyle\begin{cases} \frac{1}{b-a}, & a\leq x\leq b,\\ 0, & \mbox{otherwise}. \end{cases} $$
(3.5)
Then one can have
$$\begin{aligned} \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr) =&\mathrm{E}f(\xi)g(\xi)-\mathrm{E}f( \xi)\cdot \mathrm{E}g(\xi) \\ =&\frac{1}{b-a} \int_{a}^{b}f(x)g(x)\,dx-\frac{1}{b-a} \int_{a}^{b}f(x)\,dx\cdot \frac{1}{b-a} \int_{a}^{b}g(x)\,dx \\ =&T(f,g) \end{aligned}$$
(3.6)
and
$$ \mathrm{D}\xi=\frac{(b-a)^{2}}{12}. $$
(3.7)
Substituting (3.6) and (3.7) into (2.1) yields (3.4). Thus, the proof is complete. □
If ξ has the Gamma distribution, we can easily obtain a new inequality from (2.1).
Theorem 3.2
Let \(f,g:[0,+\infty)\rightarrow R\) be continuous in \([0,+\infty)\) and differentiable in \((0,+\infty)\) whose derivatives \(f',g':(0,+\infty)\rightarrow R\) are bounded in \((0,+\infty)\). Then for \(\alpha,\lambda>0\),
$$\begin{aligned} & \biggl\vert \int_{0}^{+\infty}f(t)g(t)t^{\alpha-1}e^{-\lambda t}\,dt \\ &\qquad {} -\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{+\infty}f(t)t^{\alpha-1}e^{-\lambda t}\,dt \int_{0}^{+\infty}g(t)t^{\alpha-1}e^{-\lambda t}\,dt \biggr\vert \\ &\quad \leq\frac{2\alpha\Gamma(\alpha)}{\lambda^{\alpha+2}}\bigl\Vert f'\bigr\Vert _{\infty}\bigl\Vert g'\bigr\Vert _{\infty}, \end{aligned}$$
(3.8)
where \(\Gamma(\alpha)\) is the well-known Gamma function, defined by
$$ \Gamma(\alpha)= \int_{0}^{+\infty}x^{\alpha-1}e^{-x}\,dx. $$
(3.9)
Proof
Let a random variable ξ possess Gamma distribution \(\Gamma(\alpha,\lambda)\) whose probability density function is
$$ \varphi(x)=\textstyle\begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1}e^{-\lambda x}, & x\geq 0,\\ 0, & x< 0, \end{cases} $$
(3.10)
where the parameters \(\alpha>0\), \(\lambda>0\). Then it is easy to obtain
$$\begin{aligned} \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr) =&\mathrm{E}f(\xi)g(\xi)-\mathrm{E}f( \xi)\cdot \mathrm{E}g(\xi) \\ =&\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{+\infty}f(t)g(t)t^{\alpha-1}e^{-\lambda t}\,dt \\ &{}-\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{+\infty}f(t)t^{\alpha-1}e^{-\lambda t}\,dt \cdot\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{+\infty}g(t)t^{\alpha-1}e^{-\lambda t}\,dt \end{aligned}$$
(3.11)
and
$$\begin{aligned} \mathrm{D}\xi=\frac{\alpha}{\lambda^{2}}. \end{aligned}$$
(3.12)
Substituting (3.11) and (3.12) into (2.1) one gets (3.8). Thus, we complete the proof. □
If ξ has the Beta distribution, one has the following inequality from (2.1).
Theorem 3.3
Suppose \(f,g:[0,1]\rightarrow R\) be continuous in \([0,1]\) and differentiable in \((0,1)\) whose derivatives \(f',g':(0,1)\rightarrow R\) are bounded in \((0,1)\). Then
$$\begin{aligned} & \biggl\vert \int_{0}^{1}f(x)g(x)x^{a-1}(1-x)^{b-1} \,dx \\ &\qquad {}-\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{0}^{1}f(x)x^{a-1}(1-x)^{b-1} \,dx \int_{0}^{1}g(x)x^{a-1}(1-x)^{b-1} \,dx \biggr\vert \\ &\quad \leq \frac{2ab\Gamma(a)\Gamma(b)\Vert f'\Vert _{\infty} \Vert g'\Vert _{\infty}}{(a+b)^{2}(a+b+1)\Gamma(a+b)}. \end{aligned}$$
(3.13)
Proof
Let ξ be a random variable which possesses the Beta distribution \(\beta(a,b)\). So, it has the following probability density function:
$$ \varphi(x)=\textstyle\begin{cases} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1-x)^{b-1}, & 0\leq x\leq1 ,\\ 0, & \mbox{otherwise}, \end{cases} $$
(3.14)
where the parameters \(a>0\), \(b>0\). Then one obtains
$$\begin{aligned} \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr) =&\mathrm{E}f(\xi)g(\xi)-\mathrm{E}f( \xi)\cdot \mathrm{E}g(\xi) \\ =&\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{0}^{1}f(x)g(x)x^{a-1}(1-x)^{b-1} \,dx \\ &{}-\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{0}^{1}f(x)x^{a-1}(1-x)^{b-1} \,dx \\ &{}\cdot\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{0}^{1}g(x)x^{a-1}(1-x)^{b-1} \,dx \end{aligned}$$
(3.15)
and
$$\begin{aligned} \mathrm{D}\xi=\frac{ab}{(a+b)^{2}(a+b+1)}. \end{aligned}$$
(3.16)
Substituting (3.15) and (3.16) into (2.1) one gets (3.13). Thus, we complete the proof. □
All above results deal with continuous random variable. Finally, we give two examples of discrete random variables.
Theorem 3.4
Let \(f,g:[0,+\infty)\rightarrow R\) be continuous in \([0,+\infty)\) and differentiable in \((0,+\infty)\) whose derivatives \(f',g':(0,+\infty)\rightarrow R\) are bounded in \((0,+\infty)\). Then, for \(\lambda>0\),
$$\begin{aligned} \Biggl\vert \sum_{k=0}^{\infty}f(k)g(k) \frac{\lambda^{k}}{k!}-e^{-\lambda}\sum_{k=0}^{\infty}f(k) \frac{\lambda^{k}}{k!} \sum_{k=1}^{\infty}g(k) \frac{\lambda^{k}}{k!}\Biggr\vert \leq 2\lambda e^{\lambda}\bigl\Vert f'\bigr\Vert _{\infty}\bigl\Vert g'\bigr\Vert _{\infty}. \end{aligned}$$
(3.17)
Proof
Let a random variable ξ possess Poisson distribution \(P(\lambda)\). So, it has the following probability function:
$$ P(\xi=k)=\frac{\lambda^{k}}{k!}e^{-\lambda},\quad k=0,1,2,\ldots, $$
(3.18)
where the parameters \(\lambda>0\). Then it is easy to obtain
$$\begin{aligned} \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr) =&\mathrm{E}f(\xi)g(\xi)-\mathrm{E}f( \xi)\cdot \mathrm{E}g(\xi) \\ =&\sum_{k=0}^{\infty}f(k)g(k) \frac{\lambda^{k}}{k!}e^{-\lambda}-\sum_{k=0}^{\infty}f(k) \frac{\lambda^{k}}{k!}e^{-\lambda} \sum_{k=1}^{\infty}g(k) \frac{\lambda^{k}}{k!}e^{-\lambda} \end{aligned}$$
(3.19)
and
$$\begin{aligned} \mathrm{D}\xi=\lambda. \end{aligned}$$
(3.20)
Substituting (3.19) and (3.20) into (2.1) yields (3.17). The proof is complete. □
Theorem 3.5
Let \(f,g:[0,+\infty)\rightarrow R\) be continuous in \([0,+\infty)\) and differentiable in \((0,+\infty)\) whose derivatives \(f',g':(0,+\infty)\rightarrow R\) are bounded in \((0,+\infty)\). Then, for \(0< p<1\) and \(n=0,1,2,\ldots \) ,
$$\begin{aligned} & \Biggl\vert \sum_{k=0}^{n}f(k)g(k){n \choose k}p^{k}(1-p)^{n-k} \\ &\qquad {}-\sum_{k=0}^{n}f(k){n\choose k}p^{k}(1-p)^{n-k} \sum_{k=1}^{n}g(k){n \choose k}p^{k}(1-p)^{n-k} \Biggr\vert \\ &\quad \leq 2np(1-p)\bigl\Vert f'\bigr\Vert _{\infty} \bigl\Vert g'\bigr\Vert _{\infty}. \end{aligned}$$
(3.21)
Proof
Let a random variable ξ possess the binomial distribution \(B(n,p)\). So, it has the following probability function:
$$ P(\xi=k)={n\choose k}p^{k}(1-p)^{n-k},\quad k=0,1,2,\ldots,n, $$
(3.22)
where the parameters \(0< p<1\). Then it is easy to obtain
$$\begin{aligned} \operatorname {Cov}\bigl(f(\xi),g(\xi)\bigr) =&\mathrm{E}f(\xi)g(\xi)-\mathrm{E}f( \xi)\cdot \mathrm{E}g(\xi) \\ =&\sum_{k=0}^{n}f(k)g(k){n \choose k}p^{k}(1-p)^{n-k} \\ &{}-\sum_{k=0}^{n}f(k){n\choose k}p^{k}(1-p)^{n-k} \sum_{k=1}^{n}g(k){n \choose k}p^{k}(1-p)^{n-k} \end{aligned}$$
(3.23)
and
$$\begin{aligned} \mathrm{D}\xi=np(1-p). \end{aligned}$$
(3.24)
Substituting (3.23) and (3.24) into (2.1) one gets (3.21). Thus, we complete the proof. □

Acknowledgements

Supported by the National Natural Science Foundation (grant 11271057) of China.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have equally made contributions. All authors read and approved the final manuscript.
Literature
1.
go back to reference Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht (1991) CrossRefMATH Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht (1991) CrossRefMATH
2.
go back to reference Agarwal, RP, Barnett, NS, Cerone, P, Dragomir, SS: A survey on some inequality for expectation and variance. Comput. Appl. Math. 49, 439-480 (2005) MathSciNet Agarwal, RP, Barnett, NS, Cerone, P, Dragomir, SS: A survey on some inequality for expectation and variance. Comput. Appl. Math. 49, 439-480 (2005) MathSciNet
3.
go back to reference Barnett, NS, Dragomir, SS: An Ostrowski type inequality for a random variable whose probability density function belongs to \(L_{\infty}[a, b]\). Nonlinear Anal. Forum 5, 125-135 (2000) MathSciNetMATH Barnett, NS, Dragomir, SS: An Ostrowski type inequality for a random variable whose probability density function belongs to \(L_{\infty}[a, b]\). Nonlinear Anal. Forum 5, 125-135 (2000) MathSciNetMATH
4.
go back to reference Barnett, NS, Cerone, P, Dragomir, SS: Inequalities for Random Variables over a Finite Interval. Nova Science Publishers, New York (2008) Barnett, NS, Cerone, P, Dragomir, SS: Inequalities for Random Variables over a Finite Interval. Nova Science Publishers, New York (2008)
5.
go back to reference Dragomir, SS, Barnet, NS, Wang, S: An Ostrowski’s type inequality for a random variable whose probability density function belongs to \(L_{P}[a, b]\), \(p > 1\). Math. Inequal. Appl. 2(4), 501-508 (1999) MathSciNetMATH Dragomir, SS, Barnet, NS, Wang, S: An Ostrowski’s type inequality for a random variable whose probability density function belongs to \(L_{P}[a, b]\), \(p > 1\). Math. Inequal. Appl. 2(4), 501-508 (1999) MathSciNetMATH
9.
go back to reference Čebyšev, PL: Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 2, 93-98 (1882) Čebyšev, PL: Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 2, 93-98 (1882)
10.
go back to reference Grüss, G: Über das Maximum des absoluten Betrages von \(\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,dx-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,dx\int_{a}^{b}g(x)\,dx\). Math. Z. 39, 215-226 (1935) MathSciNetCrossRef Grüss, G: Über das Maximum des absoluten Betrages von \(\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,dx-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,dx\int_{a}^{b}g(x)\,dx\). Math. Z. 39, 215-226 (1935) MathSciNetCrossRef
11.
go back to reference Ahmada, F, Barnett, NS, Dragomir, SS: New weighted Ostrowski and Čebyšev type inequalities. Nonlinear Anal. 71, e1408-e1412 (2009) CrossRef Ahmada, F, Barnett, NS, Dragomir, SS: New weighted Ostrowski and Čebyšev type inequalities. Nonlinear Anal. 71, e1408-e1412 (2009) CrossRef
12.
go back to reference Cerone, P, Dragomir, SS: Bounding the Čebyšev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications. Comput. Math. Appl. 58, 1247-1252 (2009) MathSciNetCrossRefMATH Cerone, P, Dragomir, SS: Bounding the Čebyšev functional for the Riemann-Stieltjes integral via a Beesack inequality and applications. Comput. Math. Appl. 58, 1247-1252 (2009) MathSciNetCrossRefMATH
13.
go back to reference Dragomir, SS: Sharp bounds of Čebyšev functional for Stieltjes integrals and applications. Bull. Aust. Math. Soc. 67, 257-266 (2003) CrossRefMATH Dragomir, SS: Sharp bounds of Čebyšev functional for Stieltjes integrals and applications. Bull. Aust. Math. Soc. 67, 257-266 (2003) CrossRefMATH
14.
go back to reference Pachpatte, BG: On Čebyšev-Grüss type inequalities via Pečarić extensions of the Montgomery identity. J. Inequal. Pure Appl. Math. 7(1), Article ID 11 (2007) Pachpatte, BG: On Čebyšev-Grüss type inequalities via Pečarić extensions of the Montgomery identity. J. Inequal. Pure Appl. Math. 7(1), Article ID 11 (2007)
15.
16.
go back to reference Yang, W: On weighted q-Čebyšev-Grüss type inequalities. Comput. Appl. Math. 61, 1342-1347 (2011) CrossRefMATH Yang, W: On weighted q-Čebyšev-Grüss type inequalities. Comput. Appl. Math. 61, 1342-1347 (2011) CrossRefMATH
Metadata
Title
An inequality for covariance with applications
Authors
Zhefei He
Mingjin Wang
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0942-7

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner