Skip to main content
Top
Published in: Journal of Electronic Materials 4/2021

05-02-2021 | Original Research Article

An Innovative Model for Electronic Band Structure Analysis of Doped and Un-Doped ZnO

Authors: Praveen K. Saxena, Anshika Srivastava, Anshu Saxena, Fanish Gupta, Priyanka Shakya, Anchal Srivastava, R. K. Shukla

Published in: Journal of Electronic Materials | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An empirical pseudopotential method, in conjunction with virtual crystal approximation and the compositional disorder effect, is exploited to extract the full electronic band structure of various ZnO thin films to ensure excellent agreement with the experimental results, and to compare with the theoretical results obtained on the basis of various density functional theories. The lattice parameters obtained through x-ray diffraction (XRD) studies have been used to characterize the full electronic band structure of various ZnO thin films. The whole work reported here has been carried out using the TNL FullBandTM simulator (Tech Next Lab). The impact of intrinsic and extrinsic doping and the formation of polycrystalline planes in thin film samples on the band gap parameter have been analyzed in terms of the internal structure factor, u. The rigorous analysis of crystalline and polycrystalline samples show that the band gap value is strongly dependent on the internal structure parameter, u. The u value has been found to be significantly affected by lattice disorder generated by the formation of various defects and polycrystalline planes in the thin films. An innovative model demonstrating the relationship between the alloy disorder effect and the internal parameter is reported. With the help of an innovative model, the value of alloy disorder parameters, P, have been extracted for undoped and 1, 2, and 3 at% Cd-, Sr-, and Fe-doped ZnO thin film samples, respectively. Reasonable agreement has been obtained between the reported and experimental optical band gap results. The results reported in the current article show superiority against previously theoretical results based on first-principles methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.L. Cohen, and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors Springer, Berlin, Heidelberg, 1988CrossRef M.L. Cohen, and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors Springer, Berlin, Heidelberg, 1988CrossRef
2.
go back to reference P.Y. Yu, and M. Cardona, Fundamentals of Semiconductors Springer, Berlin, 1999CrossRef P.Y. Yu, and M. Cardona, Fundamentals of Semiconductors Springer, Berlin, 1999CrossRef
3.
go back to reference M.K. Yaakobab, N.H. Hussinab, M.F.M. Taibab, T.I.T. Kudinab, O.H. Hassanbc, A.M.M. Aliab, and M.Z.A. Yahyad, M.K. Yaakobab, N.H. Hussinab, M.F.M. Taibab, T.I.T. Kudinab, O.H. Hassanbc, A.M.M. Aliab, and M.Z.A. Yahyad, Integr. Ferroelectr., 2014, 155, p 15–22.CrossRef M.K. Yaakobab, N.H. Hussinab, M.F.M. Taibab, T.I.T. Kudinab, O.H. Hassanbc, A.M.M. Aliab, and M.Z.A. Yahyad, M.K. Yaakobab, N.H. Hussinab, M.F.M. Taibab, T.I.T. Kudinab, O.H. Hassanbc, A.M.M. Aliab, and M.Z.A. Yahyad, Integr. Ferroelectr., 2014, 155, p 15–22.CrossRef
4.
go back to reference M. Gerosa, C.E. Bottani, C. Di, V.G. Onida, and G. Pacchioni, M. Gerosa, C.E. Bottani, C. Di, V.G. Onida, and G. Pacchioni, J. Phys. Condens. Matter, 2018, 30, p 044003.CrossRef M. Gerosa, C.E. Bottani, C. Di, V.G. Onida, and G. Pacchioni, M. Gerosa, C.E. Bottani, C. Di, V.G. Onida, and G. Pacchioni, J. Phys. Condens. Matter, 2018, 30, p 044003.CrossRef
5.
go back to reference M. Gerosa, C.E. Bottani, L. Caramella, G. Onida, C.D. Valentin, and G. Pacchioni, M. Gerosa, C.E. Bottani, L. Caramella, G. Onida, C.D. Valentin, and G. Pacchioni, Phys. Rev. B, 2015, 91, p 155201.CrossRef M. Gerosa, C.E. Bottani, L. Caramella, G. Onida, C.D. Valentin, and G. Pacchioni, M. Gerosa, C.E. Bottani, L. Caramella, G. Onida, C.D. Valentin, and G. Pacchioni, Phys. Rev. B, 2015, 91, p 155201.CrossRef
6.
go back to reference H. Kausar, S.N. Azmira, D. Bahri, Y.M. Kamil, and M.A. Azmin, H. Kausar, S.N. Azmira, D. Bahri, Y.M. Kamil, and M.A. Azmin, Results Phys., 2020, 16, p 102829.CrossRef H. Kausar, S.N. Azmira, D. Bahri, Y.M. Kamil, and M.A. Azmin, H. Kausar, S.N. Azmira, D. Bahri, Y.M. Kamil, and M.A. Azmin, Results Phys., 2020, 16, p 102829.CrossRef
8.
go back to reference D.J. Chadi, and M.L. Cohen, D.J. Chadi, and M.L. Cohen, Phys. Stat. Sol. (b), 1975, 68, p 405.CrossRef D.J. Chadi, and M.L. Cohen, D.J. Chadi, and M.L. Cohen, Phys. Stat. Sol. (b), 1975, 68, p 405.CrossRef
9.
go back to reference J. Luttinger, and W. Kohn, J. Luttinger, and W. Kohn, Phys. Rev., 1955, 97, p 869.CrossRef J. Luttinger, and W. Kohn, J. Luttinger, and W. Kohn, Phys. Rev., 1955, 97, p 869.CrossRef
10.
go back to reference M.L. Cohen, and T.K. Bergstresser, M.L. Cohen, and T.K. Bergstresser, Phys. Rev., 1966, 141, p 789.CrossRef M.L. Cohen, and T.K. Bergstresser, M.L. Cohen, and T.K. Bergstresser, Phys. Rev., 1966, 141, p 789.CrossRef
11.
go back to reference J.R. Chelikowsky, and M.L. Cohen, J.R. Chelikowsky, and M.L. Cohen, Phys Rev. B, 1976, 14, p 556.CrossRef J.R. Chelikowsky, and M.L. Cohen, J.R. Chelikowsky, and M.L. Cohen, Phys Rev. B, 1976, 14, p 556.CrossRef
12.
go back to reference N. Kumar, and A. Srivastava, N. Kumar, and A. Srivastava, J. Alloys Compd., 2017, 706, p 438–446.CrossRef N. Kumar, and A. Srivastava, N. Kumar, and A. Srivastava, J. Alloys Compd., 2017, 706, p 438–446.CrossRef
13.
go back to reference A. Srivastava, N. Kumar, K.P. Misra, and S. Khare, A. Srivastava, N. Kumar, K.P. Misra, and S. Khare, Electron. Mater. Lett., 2014, 10(4), p 703–711.CrossRef A. Srivastava, N. Kumar, K.P. Misra, and S. Khare, A. Srivastava, N. Kumar, K.P. Misra, and S. Khare, Electron. Mater. Lett., 2014, 10(4), p 703–711.CrossRef
14.
go back to reference A. Srivastava, N. Kumar, and S. Khare, A. Srivastava, N. Kumar, and S. Khare, Opto Electron. Rev., 2014, 22(1), p 68–76.CrossRef A. Srivastava, N. Kumar, and S. Khare, A. Srivastava, N. Kumar, and S. Khare, Opto Electron. Rev., 2014, 22(1), p 68–76.CrossRef
15.
go back to reference S. Bloom, and I. Ortenburcer, S. Bloom, and I. Ortenburcer, Phys. Stat. Sol. (b), 1973, 58, p 561.CrossRef S. Bloom, and I. Ortenburcer, S. Bloom, and I. Ortenburcer, Phys. Stat. Sol. (b), 1973, 58, p 561.CrossRef
16.
go back to reference S.J. Lee, T.S. Kwon, K. Nahm, and C.K. Kim, S.J. Lee, T.S. Kwon, K. Nahm, and C.K. Kim, J. Phys. Condens. Matter, 1990, 2, p 3253–3257.CrossRef S.J. Lee, T.S. Kwon, K. Nahm, and C.K. Kim, S.J. Lee, T.S. Kwon, K. Nahm, and C.K. Kim, J. Phys. Condens. Matter, 1990, 2, p 3253–3257.CrossRef
18.
go back to reference L. Prochazkova, V. Cuba, A. Beitlerova, V. Jary, S. Omelkov, and M. Nikl, L. Prochazkova, V. Cuba, A. Beitlerova, V. Jary, S. Omelkov, and M. Nikl, Opt. Express, 2018, 26(22), p 29482–29494.CrossRef L. Prochazkova, V. Cuba, A. Beitlerova, V. Jary, S. Omelkov, and M. Nikl, L. Prochazkova, V. Cuba, A. Beitlerova, V. Jary, S. Omelkov, and M. Nikl, Opt. Express, 2018, 26(22), p 29482–29494.CrossRef
19.
go back to reference F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, and R. Soc, F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, and R. Soc, Open Sci., 2019, 6, p 181764. F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, and R. Soc, F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, and R. Soc, Open Sci., 2019, 6, p 181764.
20.
go back to reference A. Fouzri, M.A. Boukadhaba, A. Toure, N. Sakly, A. Bchetnia, and V. Sallet, A. Fouzri, M.A. Boukadhaba, A. Toure, N. Sakly, A. Bchetnia, and V. Sallet, J. Cryst. Process Technol., 2013, 3, p 36–48.CrossRef A. Fouzri, M.A. Boukadhaba, A. Toure, N. Sakly, A. Bchetnia, and V. Sallet, A. Fouzri, M.A. Boukadhaba, A. Toure, N. Sakly, A. Bchetnia, and V. Sallet, J. Cryst. Process Technol., 2013, 3, p 36–48.CrossRef
21.
go back to reference P.K. Saxena, P. Srivastava, and R. Trigunayat, P.K. Saxena, P. Srivastava, and R. Trigunayat, J. Alloys Compd., 2019, 809, p 151752.CrossRef P.K. Saxena, P. Srivastava, and R. Trigunayat, P.K. Saxena, P. Srivastava, and R. Trigunayat, J. Alloys Compd., 2019, 809, p 151752.CrossRef
Metadata
Title
An Innovative Model for Electronic Band Structure Analysis of Doped and Un-Doped ZnO
Authors
Praveen K. Saxena
Anshika Srivastava
Anshu Saxena
Fanish Gupta
Priyanka Shakya
Anchal Srivastava
R. K. Shukla
Publication date
05-02-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08756-4

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue