Skip to main content
Top
Published in: Colloid and Polymer Science 7-8/2019

04-07-2019 | Original Contribution

An insight into the catalytic hydrogenation mechanism of modified dendrimer-loaded rhodium ionic catalyst for unsaturated copolymer

Authors: Wei Zhou, Xiaohong Peng

Published in: Colloid and Polymer Science | Issue 7-8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A catalytic mechanism of ionic rhodium catalyst stabilized by macrcycles-modified dendrimer (G2-M(Rh3+)) for the hydrogenation of unsaturated copolymer was proposed. It was found that the co-catalyst of triphenylphosphine (PPh3) possessed significant influence on the catalytic hydrogenation activity of G2-M(Rh3+). An active specie of [Rh(PPh3)3]+ could be generated from a ligand exchange between G2-M(Rh3+) and PPh3 during the hydrogenation process, which could outstandingly improve the selective hydrogenation activity for unsaturated co-polymers. Totally different from other catalyst for hydrogenation, the active [Rh(PPh3)3]+ was reduced to Rh0 nanoparticles which could be further recaptured by the non-coordinated macrocycles in G2-M after hydrogenation. The Rh0 recapture could significantly reduce Rh residues in the hydrogenated co-polymers. This research can give an insight into the interaction of dendrimer-loaded Rh and the co-catalyst of PPh3 during hydrogenation processs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu Y, Kim H, Pan QM, Rempel GL (2013) Hydrogenation of acrylonitrile–butadiene copolymer latex using water-soluble rhodium catalysts. Catal. Sci. Technol. 3:2689–2698CrossRef Liu Y, Kim H, Pan QM, Rempel GL (2013) Hydrogenation of acrylonitrile–butadiene copolymer latex using water-soluble rhodium catalysts. Catal. Sci. Technol. 3:2689–2698CrossRef
2.
go back to reference Wang H, Yang LJ, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: A review. Polym. Rev. 53:192–239CrossRef Wang H, Yang LJ, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: A review. Polym. Rev. 53:192–239CrossRef
3.
go back to reference De SRF, Rech V (2002) Dupont. Alternative synthesis of a dialkylimidazolium tetrafluoroborate Ionic liquid mixture and its use in poly(acrylonitrile-butadiene) hydrogenation. J. Adv. Synth. Catal. 344:153–155CrossRef De SRF, Rech V (2002) Dupont. Alternative synthesis of a dialkylimidazolium tetrafluoroborate Ionic liquid mixture and its use in poly(acrylonitrile-butadiene) hydrogenation. J. Adv. Synth. Catal. 344:153–155CrossRef
4.
go back to reference Pan QM, Rempel GL (2004) Hydrogenation of styrene-butadiene rubber catalyzed by Ru(CH=CHPh)Cl(CO)(PCy3)2. Macromol. Rapid Commun. 25:843–847CrossRef Pan QM, Rempel GL (2004) Hydrogenation of styrene-butadiene rubber catalyzed by Ru(CH=CHPh)Cl(CO)(PCy3)2. Macromol. Rapid Commun. 25:843–847CrossRef
5.
go back to reference Mudalige DC, Rempel GL (1997) Aqueous-phase hydrogenation of polybutadiene, styrene-butadiene and nitrile-butadiene polymer emulsions catalyzed by water-soluble rhodium complexes. J. Mol. Catal. A-Chem. 123:15–20CrossRef Mudalige DC, Rempel GL (1997) Aqueous-phase hydrogenation of polybutadiene, styrene-butadiene and nitrile-butadiene polymer emulsions catalyzed by water-soluble rhodium complexes. J. Mol. Catal. A-Chem. 123:15–20CrossRef
6.
go back to reference Ou HM, Wang Y, Zhou W, Peng XH (2016) Kinetics investigation on the hydrogenation of acrylonitrile-butadiene rubber latex by using new catalytic reaction system. Catal. Commun. 84:183–187CrossRef Ou HM, Wang Y, Zhou W, Peng XH (2016) Kinetics investigation on the hydrogenation of acrylonitrile-butadiene rubber latex by using new catalytic reaction system. Catal. Commun. 84:183–187CrossRef
7.
go back to reference Zou R, Li C, Zhang LQ (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal. Commun. 81:4–9CrossRef Zou R, Li C, Zhang LQ (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal. Commun. 81:4–9CrossRef
8.
go back to reference Cao P, Ni YQ, Zou R, Zhang LQ, Yue DM (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv. 5:3417–3424CrossRef Cao P, Ni YQ, Zou R, Zhang LQ, Yue DM (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv. 5:3417–3424CrossRef
9.
go back to reference Dong LB, Turgman-Cohen S, Roberts GW, Kiserow DJ (2010) Effect of Polymer size on heterogeneous catalytic polystyrene hydrogenation. Ind. Eng. Chem. Res. 49:11280–11286CrossRef Dong LB, Turgman-Cohen S, Roberts GW, Kiserow DJ (2010) Effect of Polymer size on heterogeneous catalytic polystyrene hydrogenation. Ind. Eng. Chem. Res. 49:11280–11286CrossRef
10.
go back to reference Parent JS, McManus NT, Rempel GL (1996) RhCl(PPh3)3 and RhH(PPh3)4 catalyzed hydrogenation of acrylonitrile−butadiene copolymers. Ind. Eng. Chem. Res. 35:4417–4423CrossRef Parent JS, McManus NT, Rempel GL (1996) RhCl(PPh3)3 and RhH(PPh3)4 catalyzed hydrogenation of acrylonitrile−butadiene copolymers. Ind. Eng. Chem. Res. 35:4417–4423CrossRef
11.
go back to reference Cao P, Huang CY, Zhang LQ, Yue DM (2015) One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst. RSC Adv. 5:41098–41102CrossRef Cao P, Huang CY, Zhang LQ, Yue DM (2015) One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst. RSC Adv. 5:41098–41102CrossRef
12.
go back to reference Wang H, Pan QM, Rempel GL (2012) Diene-based polymer nanoparticles: Preparation and direct catalytic latex hydrogenation. J. Polym Sci., Part A: Polym. Chem. 50:2098–2110CrossRef Wang H, Pan QM, Rempel GL (2012) Diene-based polymer nanoparticles: Preparation and direct catalytic latex hydrogenation. J. Polym Sci., Part A: Polym. Chem. 50:2098–2110CrossRef
13.
go back to reference Wang H, Yang LJ, Scott S, Pan QM, Rempel GL (2012) Organic solvent-free catalytic hydrogenation of diene-ased polymer nanoparticles in latex form. Part II. Kinetic analysis and mechanistic study. J. Polym Sci., Part A. Polym. Chem. 50:4612–4627CrossRef Wang H, Yang LJ, Scott S, Pan QM, Rempel GL (2012) Organic solvent-free catalytic hydrogenation of diene-ased polymer nanoparticles in latex form. Part II. Kinetic analysis and mechanistic study. J. Polym Sci., Part A. Polym. Chem. 50:4612–4627CrossRef
14.
go back to reference Mao TF, Rempel GL (1998) Catalytic hydrogenation of nitrile-butadiene copolymers by cationic rhodium complexes. J. Mol. Catal. A-Chem. 135:121–132CrossRef Mao TF, Rempel GL (1998) Catalytic hydrogenation of nitrile-butadiene copolymers by cationic rhodium complexes. J. Mol. Catal. A-Chem. 135:121–132CrossRef
15.
go back to reference Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 1:912–919CrossRef Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 1:912–919CrossRef
16.
go back to reference Liu Y, Wu JL, Pan QM, Rempel GL (2012) Green and simple method for catalytic hydrogenation of diene-based polymers. Top Catal. 55:637–643CrossRef Liu Y, Wu JL, Pan QM, Rempel GL (2012) Green and simple method for catalytic hydrogenation of diene-based polymers. Top Catal. 55:637–643CrossRef
17.
go back to reference Liu Y, Wei ZL, Pan QM (2013) Hydrogenation of acrylonitrile-butadiene rubber latex using in situ synthesized RhCl(PPh3)3 catalyst. Appl. Catal. A-Gen. 457:62–68CrossRef Liu Y, Wei ZL, Pan QM (2013) Hydrogenation of acrylonitrile-butadiene rubber latex using in situ synthesized RhCl(PPh3)3 catalyst. Appl. Catal. A-Gen. 457:62–68CrossRef
18.
go back to reference Yang LJ, Pan QM, Rempel GL (2013) Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal. Today. 207:153–161CrossRef Yang LJ, Pan QM, Rempel GL (2013) Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal. Today. 207:153–161CrossRef
19.
go back to reference Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem. Soc. Rev. 37:1619–1628CrossRefPubMedPubMedCentral Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem. Soc. Rev. 37:1619–1628CrossRefPubMedPubMedCentral
20.
go back to reference Lu X (2007) Tomalia. Size-Controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes. J. Phys. Chem. C. 111:2416–2420 Lu X (2007) Tomalia. Size-Controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes. J. Phys. Chem. C. 111:2416–2420
21.
go back to reference Drake MD, Bright FV, Detty MR (2003) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Origins of the “Dendrimer Effect” with catalysts terminating in phenylseleno groups. J. Am. Chem. Soc. 125:12558–12566CrossRefPubMed Drake MD, Bright FV, Detty MR (2003) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Origins of the “Dendrimer Effect” with catalysts terminating in phenylseleno groups. J. Am. Chem. Soc. 125:12558–12566CrossRefPubMed
22.
go back to reference Kaufman EA, Tarallo R, Falanga A (2017) Generation effect of newkome dendrimers on cellular uptake. Polymer. 113:67–73CrossRef Kaufman EA, Tarallo R, Falanga A (2017) Generation effect of newkome dendrimers on cellular uptake. Polymer. 113:67–73CrossRef
23.
go back to reference Hosseini H, Mahyari M, Bagheri A (2014) Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells. J. Power Sources 247:70–77CrossRef Hosseini H, Mahyari M, Bagheri A (2014) Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells. J. Power Sources 247:70–77CrossRef
24.
go back to reference Sharma AS, Shah D, Kaur H (2015) Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen. RSC Adv. 5:42935–42941CrossRef Sharma AS, Shah D, Kaur H (2015) Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen. RSC Adv. 5:42935–42941CrossRef
25.
go back to reference Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 125:3708–3711CrossRefPubMed Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 125:3708–3711CrossRefPubMed
26.
go back to reference Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110:1857–1959CrossRefPubMed Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110:1857–1959CrossRefPubMed
27.
go back to reference Badetti E, Caminade AM, Majoral JP, Moreno-Maas M, Sebastián RM (2008) Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. Langmuir. 24:2090–2101CrossRefPubMed Badetti E, Caminade AM, Majoral JP, Moreno-Maas M, Sebastián RM (2008) Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. Langmuir. 24:2090–2101CrossRefPubMed
28.
go back to reference Chung YM, Rhee HK (2004) Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles. Catal. Surv. Asia. 8:211–223CrossRef Chung YM, Rhee HK (2004) Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles. Catal. Surv. Asia. 8:211–223CrossRef
29.
go back to reference Hakim SH, Sener C, Albarubio AC (2015) Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation. J. Catal. 328:75–90CrossRef Hakim SH, Sener C, Albarubio AC (2015) Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation. J. Catal. 328:75–90CrossRef
30.
go back to reference Anna SM, Pleixats R (2010) Tsuji-Trost allylations with palladium recovery by phosphines/Pd(0)-triolefinic macrocyclic catalysts. J. Org. Chem. 695:1231–1236CrossRef Anna SM, Pleixats R (2010) Tsuji-Trost allylations with palladium recovery by phosphines/Pd(0)-triolefinic macrocyclic catalysts. J. Org. Chem. 695:1231–1236CrossRef
31.
go back to reference Llobet A, Masllorens E, Moreno-Maas M, Pla-Quintan A, Rodr′gueza M, Roglansa A (2002) Synthesis, catalytic activity and redox properties of palladium(0) complexes with 15-membered triolefinic macrocyclic ligands containing one, two or three ferrocenyl groups. Tetrahedron Lett. 43:1425–1428CrossRef Llobet A, Masllorens E, Moreno-Maas M, Pla-Quintan A, Rodr′gueza M, Roglansa A (2002) Synthesis, catalytic activity and redox properties of palladium(0) complexes with 15-membered triolefinic macrocyclic ligands containing one, two or three ferrocenyl groups. Tetrahedron Lett. 43:1425–1428CrossRef
32.
go back to reference Pla-Quintana A, Roglans A, Vicente DOJ, Moreno-Maas M, Parella T, Benet-Buchholz J, Solans X (2005) Structural analysis of chiral complexes of palladium(0) with 15-membered triolefinic macrocyclic ligands. Chem. Eur. J. 11:2689–2697CrossRefPubMed Pla-Quintana A, Roglans A, Vicente DOJ, Moreno-Maas M, Parella T, Benet-Buchholz J, Solans X (2005) Structural analysis of chiral complexes of palladium(0) with 15-membered triolefinic macrocyclic ligands. Chem. Eur. J. 11:2689–2697CrossRefPubMed
33.
go back to reference Zhou W, Yi JM, Lin JW, Fang SF, Peng XH (2016) Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber. Res. Chem. Intermediat. 43:1–12 Zhou W, Yi JM, Lin JW, Fang SF, Peng XH (2016) Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber. Res. Chem. Intermediat. 43:1–12
34.
go back to reference Zhou W, Peng XH (2016) Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber. J. Organomet. Chem. 823:76–82CrossRef Zhou W, Peng XH (2016) Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber. J. Organomet. Chem. 823:76–82CrossRef
35.
go back to reference Moreno-Maas M, Pleixats R, Sebastián RM, Vallribera A, Roglans A (2004) Organometallic chemistry of 15-membered tri-olefinic macrocycles: catalysis by palladium(0) complexes in carbon–carbon bond-forming reactions. J. Organomet. Chem. 689:3669–3684CrossRef Moreno-Maas M, Pleixats R, Sebastián RM, Vallribera A, Roglans A (2004) Organometallic chemistry of 15-membered tri-olefinic macrocycles: catalysis by palladium(0) complexes in carbon–carbon bond-forming reactions. J. Organomet. Chem. 689:3669–3684CrossRef
36.
go back to reference Moreno-Manas M, Pleixats R, Spengler J, Chevrin C, Estrine B, Bouquillon S, Henin F, Muzart J, Pla-Quintana A, Roglans A (2003) 15-membered triolefinic macrocycles -catalytic role of (E,E,E)-1,6,11-tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene complexes of palladium(0) in the presence of phosphanes. Eur. J. Org. Chem. 2:274–283CrossRef Moreno-Manas M, Pleixats R, Spengler J, Chevrin C, Estrine B, Bouquillon S, Henin F, Muzart J, Pla-Quintana A, Roglans A (2003) 15-membered triolefinic macrocycles -catalytic role of (E,E,E)-1,6,11-tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene complexes of palladium(0) in the presence of phosphanes. Eur. J. Org. Chem. 2:274–283CrossRef
37.
go back to reference Zhou W, Zhang DQ, Wang Y, Peng XH (2017) Preparation of Rh metallic nanoparticle stabilized by 15-membered nitrogen-containing triolefinic macrocycle-ended poly(propylene imine) dendrimer and its catalytic hydrogenation for nitrile-butadiene rubber. Colloid Polym. Sci. 295:1–6CrossRef Zhou W, Zhang DQ, Wang Y, Peng XH (2017) Preparation of Rh metallic nanoparticle stabilized by 15-membered nitrogen-containing triolefinic macrocycle-ended poly(propylene imine) dendrimer and its catalytic hydrogenation for nitrile-butadiene rubber. Colloid Polym. Sci. 295:1–6CrossRef
38.
go back to reference Mohammadi NA, Rempel GL (1987) Homogeneous selective catalytic hydrogenation of C=C in acrylonitrile-butadiene copolymer. Macromolecules. 20:2362–2368CrossRef Mohammadi NA, Rempel GL (1987) Homogeneous selective catalytic hydrogenation of C=C in acrylonitrile-butadiene copolymer. Macromolecules. 20:2362–2368CrossRef
39.
go back to reference Filippo M, Antonella R, Nicholas DS (2011) Chemical reactivity of triphenyl phosphorothionate (TPPT) with iron: An ATR/FT-IR and XPS investigation. J. Phys. Chem. C. 115:1339–1354CrossRef Filippo M, Antonella R, Nicholas DS (2011) Chemical reactivity of triphenyl phosphorothionate (TPPT) with iron: An ATR/FT-IR and XPS investigation. J. Phys. Chem. C. 115:1339–1354CrossRef
40.
go back to reference Pan QM, Rempel GL (2000) Numerical investigation of semibatch processes for hydrogenation of diene-based polymers. Ind. Eng. Chem. Res. 39:277–284CrossRef Pan QM, Rempel GL (2000) Numerical investigation of semibatch processes for hydrogenation of diene-based polymers. Ind. Eng. Chem. Res. 39:277–284CrossRef
41.
go back to reference Bhalchandra AK, Suman S, Shivappa B, Halligudi K, Vijayamohanan P (2008) Highly selective catalytic hydrogenation of arenes using rhodium nanoparticles supported on multiwalled carbon nanotubes. J. Phys. Chem. C. 112:13317–13319CrossRef Bhalchandra AK, Suman S, Shivappa B, Halligudi K, Vijayamohanan P (2008) Highly selective catalytic hydrogenation of arenes using rhodium nanoparticles supported on multiwalled carbon nanotubes. J. Phys. Chem. C. 112:13317–13319CrossRef
42.
go back to reference Erika V, Peter P, Albert O, Kornelia B, Andras E, Zoltan K, Janos K (2016) Stability and temperature-induced agglomeration of Rh nanoparticles supported by CeO2. Langmuir. 32:2761–2770CrossRef Erika V, Peter P, Albert O, Kornelia B, Andras E, Zoltan K, Janos K (2016) Stability and temperature-induced agglomeration of Rh nanoparticles supported by CeO2. Langmuir. 32:2761–2770CrossRef
Metadata
Title
An insight into the catalytic hydrogenation mechanism of modified dendrimer-loaded rhodium ionic catalyst for unsaturated copolymer
Authors
Wei Zhou
Xiaohong Peng
Publication date
04-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 7-8/2019
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-019-04533-2

Other articles of this Issue 7-8/2019

Colloid and Polymer Science 7-8/2019 Go to the issue

Premium Partners