Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2009

01-12-2009

An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements

Authors: Mathieu Cloutier, Fiachra B. Bolger, John P. Lowry, Peter Wellstead

Published in: Journal of Computational Neuroscience | Issue 3/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An integrative, systems approach to the modelling of brain energy metabolism is presented. Mechanisms such as glutamate cycling between neurons and astrocytes and glycogen storage in astrocytes have been implemented. A unique feature of the model is its calibration using in vivo data of brain glucose and lactate from freely moving rats under various stimuli. The model has been used to perform simulated perturbation experiments that show that glycogen breakdown in astrocytes is significantly activated during sensory (tail pinch) stimulation. This mechanism provides an additional input of energy substrate during high consumption phases. By way of validation, data from the perfusion of 50 µM propranolol in the rat brain was compared with the model outputs. Propranolol affects the glucose dynamics during stimulation, and this was accurately reproduced in the model by a reduction in the glycogen breakdown in astrocytes. The model’s predictive capacity was verified by using data from a sensory stimulation (restraint) that was not used for model calibration. Finally, a sensitivity analysis was conducted on the model parameters, this showed that the control of energy metabolism and transport processes are critical in the metabolic behaviour of cerebral tissue.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aubert, A., Costalat, R., Magistretti, P. J., & Pellerin, L. (2005). Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proceedings of the National Academy of Sciences of the United States of America, 102, 16448–16453. doi:10.1073/pnas.0505427102.CrossRefPubMed Aubert, A., Costalat, R., Magistretti, P. J., & Pellerin, L. (2005). Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proceedings of the National Academy of Sciences of the United States of America, 102, 16448–16453. doi:10.​1073/​pnas.​0505427102.CrossRefPubMed
go back to reference Bolger, F., Serra, P. A., O’Neill, R. D., Fillenz, M., & Lowry, J. P. (2006). Real-time monitoring of brain extracellular lactate. In G. Di Chiara, E. Carboni, V. Valentini, E. Acquas, V. Bassareo & C. Cadoni (Eds.), Monitoring Molecules in Neuroscience, pp. p286–288. Cagliara, Italy: University of Cagliari Press. Bolger, F., Serra, P. A., O’Neill, R. D., Fillenz, M., & Lowry, J. P. (2006). Real-time monitoring of brain extracellular lactate. In G. Di Chiara, E. Carboni, V. Valentini, E. Acquas, V. Bassareo & C. Cadoni (Eds.), Monitoring Molecules in Neuroscience, pp. p286–288. Cagliara, Italy: University of Cagliari Press.
go back to reference Brown, A. M., Sickmann, H. M., Fosgerau, K., Lund, T. M., Schousboe, A., Waagepetersen, H. S., et al. (2005). Astrocytes glycogen metabolism is required for neuronal activity during aglycemia or intense stimulation in mouse white matter. Journal of Neuroscience Research, 79, 74–80. doi:10.1002/jnr.20335.CrossRefPubMed Brown, A. M., Sickmann, H. M., Fosgerau, K., Lund, T. M., Schousboe, A., Waagepetersen, H. S., et al. (2005). Astrocytes glycogen metabolism is required for neuronal activity during aglycemia or intense stimulation in mouse white matter. Journal of Neuroscience Research, 79, 74–80. doi:10.​1002/​jnr.​20335.CrossRefPubMed
go back to reference Cakir, T., Aslan, S., Saybasili, H., Akin, A., & Ulgen, K. (2007). Reconstruction and Flux Analysis of Coupling Between Metabolic Pathways of Astrocytes and Neurons: Application to Cerebral Hypoxia. Theoretical Biology & Medical Modelling, 4, 48–66. doi:10.1186/1742-4682-4-48.CrossRef Cakir, T., Aslan, S., Saybasili, H., Akin, A., & Ulgen, K. (2007). Reconstruction and Flux Analysis of Coupling Between Metabolic Pathways of Astrocytes and Neurons: Application to Cerebral Hypoxia. Theoretical Biology & Medical Modelling, 4, 48–66. doi:10.​1186/​1742-4682-4-48.CrossRef
go back to reference Gjedde, A. (1997). The Relation Between Brain Function and Cerebral Blood Flow and Metabolism. In H. H. Batjer (Ed.), Cerebrovascular disease, pp. 23–40. USA, Lippinscott-Raven: Philadelphia. Gjedde, A. (1997). The Relation Between Brain Function and Cerebral Blood Flow and Metabolism. In H. H. Batjer (Ed.), Cerebrovascular disease, pp. 23–40. USA, Lippinscott-Raven: Philadelphia.
go back to reference Gjedde, A. (2002). Coupling of Blood Flow to Neuronal Excitability. In W. Walz (Ed.), The Neuronal Environment: Brain Homeostasis in Health and Disease, pp. 432–444. NJ, USA, Humana Press: Totowa. Gjedde, A. (2002). Coupling of Blood Flow to Neuronal Excitability. In W. Walz (Ed.), The Neuronal Environment: Brain Homeostasis in Health and Disease, pp. 432–444. NJ, USA, Humana Press: Totowa.
go back to reference Gruetter, R., Seaquist, E. R., & Ugurbil, K. (2001). A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. American Journal of Physiology. Endocrinology and Metabolism, 281, 100–112. Gruetter, R., Seaquist, E. R., & Ugurbil, K. (2001). A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. American Journal of Physiology. Endocrinology and Metabolism, 281, 100–112.
go back to reference Haefner, J.W. (1996) Modelling Biological Systems: Principles and Applications. New York, ITP Chapman & Hall. Haefner, J.W. (1996) Modelling Biological Systems: Principles and Applications. New York, ITP Chapman & Hall.
go back to reference Heinrich, R., & Schuster, S.(1996) The regulation of cellular systems. New York, ITP Chapman & Hall. Heinrich, R., & Schuster, S.(1996) The regulation of cellular systems. New York, ITP Chapman & Hall.
go back to reference Hyder, F., Patel, A. B., Gjedde, A., Rothman, D. L., Behar, K. L., & Shulman, R. G. (2006). Neuronal-Glial Glucose Oxidation and Glutamatergic-GABAergic Function. Journal of Cerebral Blood Flow and Metabolism, 26, 865–877. doi:10.1038/sj.jcbfm.9600263.CrossRefPubMed Hyder, F., Patel, A. B., Gjedde, A., Rothman, D. L., Behar, K. L., & Shulman, R. G. (2006). Neuronal-Glial Glucose Oxidation and Glutamatergic-GABAergic Function. Journal of Cerebral Blood Flow and Metabolism, 26, 865–877. doi:10.​1038/​sj.​jcbfm.​9600263.CrossRefPubMed
go back to reference Lowry, J. P., & O’Neill, R. D. (2006) Neuroanalytical chemistry in vivo using electrochemical sensors in Encyclopedia of Sensors, Grimes, C.A., Dickey, E.C. & Pishko, M.V ed(s)., American Scientific Publishers, California, USA. Lowry, J. P., & O’Neill, R. D. (2006) Neuroanalytical chemistry in vivo using electrochemical sensors in Encyclopedia of Sensors, Grimes, C.A., Dickey, E.C. & Pishko, M.V ed(s)., American Scientific Publishers, California, USA.
go back to reference Magistretti P. J. (2006) Neuron-glia metabolic coupling and plasticity. The Journal of Experimental Biology. 209, 2304–2311. Magistretti P. J. (2006) Neuron-glia metabolic coupling and plasticity. The Journal of Experimental Biology. 209, 2304–2311.
go back to reference McNay, E. C., McCarty, R. C., & Gold, P. E. (2001). Fluctuations in Brain Glucose Concentration during Behavioral Testing: Dissociations between Brain Areas and between Brain and Blood. Neurobiology of Learning and Memory, 75(3), 325–337. doi:10.1006/nlme.2000.3976.CrossRefPubMed McNay, E. C., McCarty, R. C., & Gold, P. E. (2001). Fluctuations in Brain Glucose Concentration during Behavioral Testing: Dissociations between Brain Areas and between Brain and Blood. Neurobiology of Learning and Memory, 75(3), 325–337. doi:10.​1006/​nlme.​2000.​3976.CrossRefPubMed
go back to reference Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629. doi:10.1073/pnas.91.22.10625.CrossRefPubMed Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629. doi:10.​1073/​pnas.​91.​22.​10625.CrossRefPubMed
go back to reference Pellerin, L., Bouzier-Sore, A. K., Auber, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-Dependant Regulation of Energy Metabolism by Astrocytes: An Update. Glia, 55, 1251–1262. doi:10.1002/glia.20528.CrossRefPubMed Pellerin, L., Bouzier-Sore, A. K., Auber, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-Dependant Regulation of Energy Metabolism by Astrocytes: An Update. Glia, 55, 1251–1262. doi:10.​1002/​glia.​20528.CrossRefPubMed
go back to reference Schmidt, H., & Jirstand, M. (2006). Systems Biology Toolbox for MATLAB: A computational platform for research in Systems Biology. Bioinformatics (Oxford, England), 22, 514–515. doi:10.1093/bioinformatics/bti799 Schmidt, H., & Jirstand, M. (2006). Systems Biology Toolbox for MATLAB: A computational platform for research in Systems Biology. Bioinformatics (Oxford, England), 22, 514–515. doi:10.​1093/​bioinformatics/​bti799
go back to reference Shen, J., Petersen, K., Behar, K., Brown, P., Nixon, T., Mason, G., et al. (1999). Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 96, 8235–8240. doi:10.1073/pnas.96.14.8235.CrossRefPubMed Shen, J., Petersen, K., Behar, K., Brown, P., Nixon, T., Mason, G., et al. (1999). Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proceedings of the National Academy of Sciences of the United States of America, 96, 8235–8240. doi:10.​1073/​pnas.​96.​14.​8235.CrossRefPubMed
go back to reference Shestov, A. A., Valette, J., Ugurbil, K., & Henry, P.-G. (2007). On the reliability of 13C metabolic modeling with two-compartment neuronal-glial models. Journal of Neuroscience Research, 85(15), 3294–3303. doi:10.1002/jnr.21269.CrossRefPubMed Shestov, A. A., Valette, J., Ugurbil, K., & Henry, P.-G. (2007). On the reliability of 13C metabolic modeling with two-compartment neuronal-glial models. Journal of Neuroscience Research, 85(15), 3294–3303. doi:10.​1002/​jnr.​21269.CrossRefPubMed
go back to reference Uffmann, K., & Gruetter, R. (2007). Mathematical modeling of 13C label incorporation of the TCA cycle: The concept of composite precursor function. Journal of Neuroscience Research, 85(15), 3304–3317. doi:10.1002/jnr.21392.CrossRefPubMed Uffmann, K., & Gruetter, R. (2007). Mathematical modeling of 13C label incorporation of the TCA cycle: The concept of composite precursor function. Journal of Neuroscience Research, 85(15), 3304–3317. doi:10.​1002/​jnr.​21392.CrossRefPubMed
go back to reference Underwood, A. H., & Newsholme, E. A. (1965). Properties of Phosphofructokinase From Rat Liver and Their Relation to the Control of Glycolysis and Gluconeogenesis. The Biochemical Journal, 95, 868–875.PubMed Underwood, A. H., & Newsholme, E. A. (1965). Properties of Phosphofructokinase From Rat Liver and Their Relation to the Control of Glycolysis and Gluconeogenesis. The Biochemical Journal, 95, 868–875.PubMed
go back to reference Zwingmann, C., & Butterworth, R. (2005). An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: Further studies using NMR spectroscopy. Neurochemistry International, 47, 19–30. doi:10.1016/j.neuint.2005.04.003.CrossRefPubMed Zwingmann, C., & Butterworth, R. (2005). An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: Further studies using NMR spectroscopy. Neurochemistry International, 47, 19–30. doi:10.​1016/​j.​neuint.​2005.​04.​003.CrossRefPubMed
Metadata
Title
An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements
Authors
Mathieu Cloutier
Fiachra B. Bolger
John P. Lowry
Peter Wellstead
Publication date
01-12-2009
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2009
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0152-8

Other articles of this Issue 3/2009

Journal of Computational Neuroscience 3/2009 Go to the issue

Premium Partner