Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-04-2019 | Methodologies and Application | Issue 2/2020

Soft Computing 2/2020

An intelligent credit card fraud detection approach based on semantic fusion of two classifiers

Journal:
Soft Computing > Issue 2/2020
Author:
Saad M. Darwish
Important notes
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The increased usage of credit cards for online and regular purchases in E-banking communication systems is vulnerable to credit card fraud. Data imbalance also poses a huge challenge in the fraud detection process. The efficiency of the current fraud detection system (FDS) is in question only because they detect the fraudulent activity after the suspicious transaction is done. This paper proposes an intelligent two-level credit card fraud detection model from highly imbalanced datasets, relying on the semantic fusion of k-means and artificial bee colony algorithm (ABC) to enhance the classification accuracy and speed up detection convergence. ABC as a second classification level performs a kind of neighborhood search combined with the global search to handle the inability the k-means classifier to discover the real cluster if the same data is inputted in a different order it may produce different cluster. Besides, the k-means classifier may be surrounded by the local optimum as it is sensitive to the initial condition. The advised system filters the dataset’ features using a built-in rule engine to analyze whether the transaction is genuine or fraudulent based on many customer behavior (profile) parameters such geographical locations, usage frequency, and book balance. Experimental results indicate that the proposed model can enhance the classification accuracy against the risk coming from suspicious transactions, and gives higher accuracy compared to traditional methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Soft Computing 2/2020 Go to the issue

Premium Partner

    Image Credits