Skip to main content
Top

2024 | OriginalPaper | Chapter

An Intelligent System Proposal for Providing Driving Data for Autonomous Drive Simulations

Authors : Muhammet Raşit Cesur, Elif Cesur, Abdülsamet Kara

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter discusses the necessity of incorporating human-like behaviors into autonomous driving algorithms to effectively navigate hybrid traffic environments. It presents a proposed system that analyzes traffic videos to generate driving patterns related to displacement and velocity, using deep learning models like YOLOv5 for vehicle detection and SIFT for background detection. The system calculates vehicle speed and displacement without requiring intrinsic and extrinsic camera parameters, making it a practical solution for generating realistic driving datasets. The chapter highlights the importance of creating simulation models that closely resemble real-world conditions and the advantages of using simulation-based solutions in autonomous driving research and development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ben Khalifa, A., Alouani, I., Mahjoub, M.A., Ben Amara, N.E.: Pedestrian detection using a moving camera: a novel framework for foreground detection. Cogn. Syst. Res. 60, 77–96 (2020)CrossRef Ben Khalifa, A., Alouani, I., Mahjoub, M.A., Ben Amara, N.E.: Pedestrian detection using a moving camera: a novel framework for foreground detection. Cogn. Syst. Res. 60, 77–96 (2020)CrossRef
2.
go back to reference Chapel, M.-N., Bouwmans, T.: Moving objects detection with a moving camera: a comprehensive review. Comput. Sci. Rev. 38, 100310 (2020)MathSciNetCrossRefMATH Chapel, M.-N., Bouwmans, T.: Moving objects detection with a moving camera: a comprehensive review. Comput. Sci. Rev. 38, 100310 (2020)MathSciNetCrossRefMATH
3.
go back to reference Cina, M., Rad, A.B.: Categorized review of drive simulators and driver behavior analysis focusing on ACT-R architecture in autonomous vehicles. Sustain. Energy Technol. Assessments. 56, 103044 (2023)CrossRef Cina, M., Rad, A.B.: Categorized review of drive simulators and driver behavior analysis focusing on ACT-R architecture in autonomous vehicles. Sustain. Energy Technol. Assessments. 56, 103044 (2023)CrossRef
4.
go back to reference Coskun, S.: Autonomous overtaking in highways: a receding horizon trajectory generator with embedded safety feature. Eng. Sci. Technol. Int. J. 24, 1049–1058 (2021) Coskun, S.: Autonomous overtaking in highways: a receding horizon trajectory generator with embedded safety feature. Eng. Sci. Technol. Int. J. 24, 1049–1058 (2021)
5.
go back to reference Delibasoglu, I., Kosesoy, I., Kotan, M., Selamet, F.: Motion detection in moving camera videos using background modeling and FlowNet. J. Vis. Commun. Image Represent. 88, 103616 (2022)CrossRef Delibasoglu, I., Kosesoy, I., Kotan, M., Selamet, F.: Motion detection in moving camera videos using background modeling and FlowNet. J. Vis. Commun. Image Represent. 88, 103616 (2022)CrossRef
6.
go back to reference Di, X., Shi, R.: A survey on autonomous vehicle control in the era of mixed-autonomy: from physics-based to AI-guided driving policy learning. Transp. Res. Part C Emerg. Technol. 125, 103008 (2021)CrossRef Di, X., Shi, R.: A survey on autonomous vehicle control in the era of mixed-autonomy: from physics-based to AI-guided driving policy learning. Transp. Res. Part C Emerg. Technol. 125, 103008 (2021)CrossRef
7.
go back to reference Gao, L., Bai, W., Leary, R., Varadarajan, K., Brennan, S.: ROS integration of external vehicle motion simulations with an AIMSUN traffic simulator as a tool to assess CAV impacts on traffic. IFAC-PapersOnLine. 54, 870–875 (2021)CrossRef Gao, L., Bai, W., Leary, R., Varadarajan, K., Brennan, S.: ROS integration of external vehicle motion simulations with an AIMSUN traffic simulator as a tool to assess CAV impacts on traffic. IFAC-PapersOnLine. 54, 870–875 (2021)CrossRef
8.
go back to reference Jung, J., Kim, H., Park, K., Lee, K.Y.: State estimation for autonomous guided vehicle using the extended Kalman filter. IFAC Proc. 35, 487–492 (2002) Jung, J., Kim, H., Park, K., Lee, K.Y.: State estimation for autonomous guided vehicle using the extended Kalman filter. IFAC Proc. 35, 487–492 (2002)
9.
go back to reference Li, T., Guo, F., Krishnan, R., Sivakumar, A., Polak, J.: Right-of-way reallocation for mixed flow of autonomous vehicles and human driven vehicles. Transp. Res. Part C Emerg. Technol. 115, 102630 (2020)CrossRef Li, T., Guo, F., Krishnan, R., Sivakumar, A., Polak, J.: Right-of-way reallocation for mixed flow of autonomous vehicles and human driven vehicles. Transp. Res. Part C Emerg. Technol. 115, 102630 (2020)CrossRef
10.
go back to reference Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. Inf. Softw. Technol. 117, 106200 (2020)CrossRef Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. Inf. Softw. Technol. 117, 106200 (2020)CrossRef
11.
go back to reference Li, Z., Zhan, W., Sun, L., Chan, C.-Y., Tomizuka, M.: Adaptive sampling-based motion planning with a non-conservatively defensive strategy for autonomous driving. IFAC-PapersOnLine. 53, 15632–15638 (2020)CrossRef Li, Z., Zhan, W., Sun, L., Chan, C.-Y., Tomizuka, M.: Adaptive sampling-based motion planning with a non-conservatively defensive strategy for autonomous driving. IFAC-PapersOnLine. 53, 15632–15638 (2020)CrossRef
12.
go back to reference Minematsu, T., Uchiyama, H., Shimada, A., Nagahara, H., Taniguchi, R.-I.: Adaptive background model registration for moving cameras. Pattern Recognit. Lett. 96, 86–95 (2017)CrossRef Minematsu, T., Uchiyama, H., Shimada, A., Nagahara, H., Taniguchi, R.-I.: Adaptive background model registration for moving cameras. Pattern Recognit. Lett. 96, 86–95 (2017)CrossRef
13.
go back to reference Nan, J., Shang, B., Deng, W., Ren, B., Liu, Y.: MPC-based path tracking control with forward compensation for autonomous driving. IFAC-PapersOnLine. 54, 443–448 (2021)CrossRef Nan, J., Shang, B., Deng, W., Ren, B., Liu, Y.: MPC-based path tracking control with forward compensation for autonomous driving. IFAC-PapersOnLine. 54, 443–448 (2021)CrossRef
14.
go back to reference Sabat, N., Raj, S., George, S.N., Kumar, S.: A computationally efficient moving object detection technique using tensor QR decomposition based TRPCA framework. J. Vis. Commun. Image Represent. 92, 103785 (2023)CrossRef Sabat, N., Raj, S., George, S.N., Kumar, S.: A computationally efficient moving object detection technique using tensor QR decomposition based TRPCA framework. J. Vis. Commun. Image Represent. 92, 103785 (2023)CrossRef
15.
go back to reference Yun, K., Lim, J., Choi, J.Y.: Scene conditional background update for moving object detection in a moving camera. Pattern Recognit. Lett. 88, 57–63 (2017)CrossRef Yun, K., Lim, J., Choi, J.Y.: Scene conditional background update for moving object detection in a moving camera. Pattern Recognit. Lett. 88, 57–63 (2017)CrossRef
16.
go back to reference Zhao, X., Wang, G., He, Z., Jiang, H.: A survey of moving object detection methods: a practical perspective. Neurocomputing 503, 28–48 (2022)CrossRef Zhao, X., Wang, G., He, Z., Jiang, H.: A survey of moving object detection methods: a practical perspective. Neurocomputing 503, 28–48 (2022)CrossRef
Metadata
Title
An Intelligent System Proposal for Providing Driving Data for Autonomous Drive Simulations
Authors
Muhammet Raşit Cesur
Elif Cesur
Abdülsamet Kara
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_60

Premium Partners