Skip to main content
Top
Published in:

10-08-2021

An Interval-Valued Intuitionistic Hesitant Fuzzy Methodology and Application

Author: Shailendra Kumar Bharati

Published in: New Generation Computing | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using advantages of interval-valued intuitionistic hesitant fuzzy sets (IVIHFS) for describing the hesitant and intuitionistic decisions of experts and identifying the limitations of previous research works about optimization techniques, this paper introduces a new optimization technique and provides a new computational algorithm, applicable in various real life multiobjective optimization problem (MOOP) of engineering and management sectors, and for this, a new operation between IVIHFSs is first introduced. On the basis of this concept, a stepwise computational algorithm is constructed, and it is an extension of both fuzzy and intuitionistic fuzzy optimization techniques. Finally, the proposed algorithm is illustrated using a production planning problem, and the obtained results are compared with the existing optimization techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Arya, V., Kumar, S.: Knowledge measure and entropy: a complementary concept in fuzzy theory. Granul. Comput. 6, 631–643 (2021)CrossRef Arya, V., Kumar, S.: Knowledge measure and entropy: a complementary concept in fuzzy theory. Granul. Comput. 6, 631–643 (2021)CrossRef
3.
go back to reference Atanassov T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRef Atanassov T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRef
5.
go back to reference Bharati, S.K., Singh, S.R.: Solution of multiobjective linear programming problems in interval-valued intuitionistic fuzzy environment. Soft. Comput. 23, 77–84 (2019)CrossRef Bharati, S.K., Singh, S.R.: Solution of multiobjective linear programming problems in interval-valued intuitionistic fuzzy environment. Soft. Comput. 23, 77–84 (2019)CrossRef
6.
go back to reference Brikaa, M.G., Zheng, Z., Ammar, E.S.: Fuzzy multi-objective programming approach for constrained matrix games with payoffs of fuzzy rough numbers. Symmetry. 11, 702 (2019)CrossRef Brikaa, M.G., Zheng, Z., Ammar, E.S.: Fuzzy multi-objective programming approach for constrained matrix games with payoffs of fuzzy rough numbers. Symmetry. 11, 702 (2019)CrossRef
7.
go back to reference Charnes, A., Cooper, W.W.: Goal programming and multiple objective optimizations: Part 1. Eur. J. Oper. Res. 1, 39–54 (1977)CrossRef Charnes, A., Cooper, W.W.: Goal programming and multiple objective optimizations: Part 1. Eur. J. Oper. Res. 1, 39–54 (1977)CrossRef
8.
go back to reference Cheng, H., Huang, W., Zhou, Q., Cai, J.: Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max-min method. Appl. Math. Model. 37(10–11), 6855–6869 (2013)MathSciNetCrossRef Cheng, H., Huang, W., Zhou, Q., Cai, J.: Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max-min method. Appl. Math. Model. 37(10–11), 6855–6869 (2013)MathSciNetCrossRef
9.
go back to reference El Sayed, M. A., Abo-Sinna, M. A.: A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alex. Eng. J. 60, 1447–1463 (2021)CrossRef El Sayed, M. A., Abo-Sinna, M. A.: A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alex. Eng. J. 60, 1447–1463 (2021)CrossRef
10.
go back to reference Evans, J. P., Steuer, R. E.: A revised simplex method for linear multiple objective programs. Math. Program. 5, 54–72 (1973)MathSciNetCrossRef Evans, J. P., Steuer, R. E.: A revised simplex method for linear multiple objective programs. Math. Program. 5, 54–72 (1973)MathSciNetCrossRef
11.
go back to reference Freen, G., Kousar, S., Khalil, S.: Multi-objective non-linear four-valued refined neutrosophic optimization. Comp. Appl. Math. 39, 35 (2020)MathSciNetCrossRef Freen, G., Kousar, S., Khalil, S.: Multi-objective non-linear four-valued refined neutrosophic optimization. Comp. Appl. Math. 39, 35 (2020)MathSciNetCrossRef
13.
go back to reference Joshi, D.K., Kumar, S.: Entropy of interval-valued intuitionistic hesitant fuzzy set and its application to group decision making problems. Granul. Comput. 3, 367–381 (2018)CrossRef Joshi, D.K., Kumar, S.: Entropy of interval-valued intuitionistic hesitant fuzzy set and its application to group decision making problems. Granul. Comput. 3, 367–381 (2018)CrossRef
14.
go back to reference Karimi, H., Bahmani, R., Jadid, S.: Stochastic multi-objective optimization to design optimal transactive pricing for dynamic demand response programs: a bi-level fuzzy approach. Int. J. Power Energy Syst. 125, 106487 (2021)CrossRef Karimi, H., Bahmani, R., Jadid, S.: Stochastic multi-objective optimization to design optimal transactive pricing for dynamic demand response programs: a bi-level fuzzy approach. Int. J. Power Energy Syst. 125, 106487 (2021)CrossRef
15.
go back to reference Khalil, S., Smarandache, F., Kousar, S., Freen, G.: Multiobjective nonlinear bipolar neutrosophic optimization and its comparison with existing techniques. Optim. Theory Based Neutrosophic Plithogenic Sets 289–314 (2020) Khalil, S., Smarandache, F., Kousar, S., Freen, G.: Multiobjective nonlinear bipolar neutrosophic optimization and its comparison with existing techniques. Optim. Theory Based Neutrosophic Plithogenic Sets 289–314 (2020)
16.
go back to reference Kumar, P.S.: Finding the solution of balanced and unbalanced intuitionistic fuzzy transportation problems by using different methods with some software packages. In: Handbook of Research on Applied AI for International Business and Marketing Applications, pp. 278–320. IGI Global (2021) Kumar, P.S.: Finding the solution of balanced and unbalanced intuitionistic fuzzy transportation problems by using different methods with some software packages. In: Handbook of Research on Applied AI for International Business and Marketing Applications, pp. 278–320. IGI Global (2021)
17.
go back to reference Kumar, P.S.: The PSK method for solving fully intuitionistic fuzzy assignment problems with some software tools. In: Theoretical and Applied Mathematics in International Business, pp. 149–202. IGI Global (2020) Kumar, P.S.: The PSK method for solving fully intuitionistic fuzzy assignment problems with some software tools. In: Theoretical and Applied Mathematics in International Business, pp. 149–202. IGI Global (2020)
18.
go back to reference Kumar, P. S.: Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem. Int. J. Oper. Res. 37, 418–451 (2020)MathSciNetCrossRef Kumar, P. S.: Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem. Int. J. Oper. Res. 37, 418–451 (2020)MathSciNetCrossRef
19.
go back to reference Kumar, P. S.: Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set. Int. J. Syst. Assur. Eng. Manag. 11, 189–222 (2020)CrossRef Kumar, P. S.: Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set. Int. J. Syst. Assur. Eng. Manag. 11, 189–222 (2020)CrossRef
20.
go back to reference Kumbhar, K., Das, S.: Solving multi-attribute decision-making problems using probabilistic interval-valued intuitionistic hesitant fuzzy set and particle swarm optimization. Num. Optim. Eng. Sci. 149–158 (2020) Kumbhar, K., Das, S.: Solving multi-attribute decision-making problems using probabilistic interval-valued intuitionistic hesitant fuzzy set and particle swarm optimization. Num. Optim. Eng. Sci. 149–158 (2020)
21.
go back to reference Liu, L., Chen, Y.: Interval-valued intuitionistic hesitant fuzzy Quasi-Choquet geometric operators based TOPSIS method for multi-criteria group decision making, 29th Chinese Control And Decision Conference (CCDC), Chongqing 2374–2380 (2017) Liu, L., Chen, Y.: Interval-valued intuitionistic hesitant fuzzy Quasi-Choquet geometric operators based TOPSIS method for multi-criteria group decision making, 29th Chinese Control And Decision Conference (CCDC), Chongqing 2374–2380 (2017)
22.
go back to reference Lu, J., Wu, F., Zhang, G.: On a generalized fuzzy goal optimization for solving fuzzy multi-objective linear programming problems. J. Intell. Fuzzy Syst. 18, 83–97 (2007)MATH Lu, J., Wu, F., Zhang, G.: On a generalized fuzzy goal optimization for solving fuzzy multi-objective linear programming problems. J. Intell. Fuzzy Syst. 18, 83–97 (2007)MATH
23.
go back to reference Mahajan, S., Gupta, S.K.: On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions. Ann. Oper. Res. 1–31 (2019) Mahajan, S., Gupta, S.K.: On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions. Ann. Oper. Res. 1–31 (2019)
25.
go back to reference Narayanamoorthy, S., Geetha, S., Rakkiyappan, R., Joo, Y. H.: Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. Expert Syst. Appl. 121, 28–37 (2019)CrossRef Narayanamoorthy, S., Geetha, S., Rakkiyappan, R., Joo, Y. H.: Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. Expert Syst. Appl. 121, 28–37 (2019)CrossRef
26.
go back to reference Ranjbar, M., Effati, S.: Symmetric and right-hand-side hesitant fuzzy linear programming. IEEE Trans. Fuzzy Syst. 28, 215–227 (2019)CrossRef Ranjbar, M., Effati, S.: Symmetric and right-hand-side hesitant fuzzy linear programming. IEEE Trans. Fuzzy Syst. 28, 215–227 (2019)CrossRef
29.
go back to reference Ranjbar, M., Miri, S.M., Effati, S.: Hesitant fuzzy numbers with (a, k)-cuts in compact intervals and applications. Expert Syst Appl. 151, 113363 (2020)CrossRef Ranjbar, M., Miri, S.M., Effati, S.: Hesitant fuzzy numbers with (a, k)-cuts in compact intervals and applications. Expert Syst Appl. 151, 113363 (2020)CrossRef
30.
go back to reference Rouhbakhsh, F. F., Ranjbar, M., Effati, S., Hassanpour, H.: Multi objective programming problem in the hesitant fuzzy environment. Appl. Intell. 50, 2991–3006 (2020)CrossRef Rouhbakhsh, F. F., Ranjbar, M., Effati, S., Hassanpour, H.: Multi objective programming problem in the hesitant fuzzy environment. Appl. Intell. 50, 2991–3006 (2020)CrossRef
31.
go back to reference Sen, S., Patra, K. Mondal, S.K.: A new approach to similarity measure for generalized trapezoidal fuzzy numbers and its application to fuzzy risk analysis. Granul. Comput. 6, 705–718 (2021)CrossRef Sen, S., Patra, K. Mondal, S.K.: A new approach to similarity measure for generalized trapezoidal fuzzy numbers and its application to fuzzy risk analysis. Granul. Comput. 6, 705–718 (2021)CrossRef
32.
go back to reference Shih, T. S., Lee, H. M., Su, J. S.: Fuzzy multiple objective programming based on interval-valued fuzzy sets. Eighth Int. Conf. Intell. Syst. Design Appl. 1, 397–402 (2008) Shih, T. S., Lee, H. M., Su, J. S.: Fuzzy multiple objective programming based on interval-valued fuzzy sets. Eighth Int. Conf. Intell. Syst. Design Appl. 1, 397–402 (2008)
33.
go back to reference Sooraj, T.R., Mohanty, R.K., Tripathy, B.K.: A new approach to interval-valued intuitionistic hesitant fuzzy soft sets and their application in decision making. In: Satapathy, S., Bhateja, V., Das, S. (eds.) Smart computing and informatics. Smart innovation, systems and technologies, vol. 77. Springer, Singapore (2018) Sooraj, T.R., Mohanty, R.K., Tripathy, B.K.: A new approach to interval-valued intuitionistic hesitant fuzzy soft sets and their application in decision making. In: Satapathy, S., Bhateja, V., Das, S. (eds.) Smart computing and informatics. Smart innovation, systems and technologies, vol. 77. Springer, Singapore (2018)
34.
go back to reference Tarabia, A.M.K., Kassem, M.A.E. El-Badry, N.M.: A modified approach for solving a fuzzy multi-objective programming problem. Appl. Inform. 4, 1 (2017)CrossRef Tarabia, A.M.K., Kassem, M.A.E. El-Badry, N.M.: A modified approach for solving a fuzzy multi-objective programming problem. Appl. Inform. 4, 1 (2017)CrossRef
35.
go back to reference Torra V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)MATH Torra V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)MATH
36.
go back to reference Uddin, M. S., Miah, M., Khan, M. A. A., AlArjani, A.: Goal programming tactic for uncertain multi-objective transportation problem using fuzzy linear membership function. Alex. Eng. 60, 2525–2533 (2021)CrossRef Uddin, M. S., Miah, M., Khan, M. A. A., AlArjani, A.: Goal programming tactic for uncertain multi-objective transportation problem using fuzzy linear membership function. Alex. Eng. 60, 2525–2533 (2021)CrossRef
37.
go back to reference Vij, S., Jain, A., Tayal, D., Castillo, O.: Scientometric inspection of research progression in hesitant fuzzy sets. J. Intell. Fuzzy Syst. 38, 619–626 (2020)CrossRef Vij, S., Jain, A., Tayal, D., Castillo, O.: Scientometric inspection of research progression in hesitant fuzzy sets. J. Intell. Fuzzy Syst. 38, 619–626 (2020)CrossRef
38.
go back to reference Wei, Y., Gao, L., Wang, C., Ha, M.: Distance measures for interval-valued intuitionistic hesitant fuzzy sets. In: Cao, B.Y., Liu, Z.L., Zhong, Y.B., Mi, H.H. (eds) Fuzzy systems and operations research and management. Advances in intelligent systems and computing, vol. 367. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-19105-8_4 Wei, Y., Gao, L., Wang, C., Ha, M.: Distance measures for interval-valued intuitionistic hesitant fuzzy sets. In: Cao, B.Y., Liu, Z.L., Zhong, Y.B., Mi, H.H. (eds) Fuzzy systems and operations research and management. Advances in intelligent systems and computing, vol. 367. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-19105-8_​4
39.
go back to reference Wu, F., Lu, J., Zhang, G.: A new approximate algorithm for solving multiple objective linear programming problems with fuzzy parameters. Appl. Math. Comput. 174, 524–544 (2006)MathSciNetMATH Wu, F., Lu, J., Zhang, G.: A new approximate algorithm for solving multiple objective linear programming problems with fuzzy parameters. Appl. Math. Comput. 174, 524–544 (2006)MathSciNetMATH
40.
go back to reference Xia, M.M., Xu, Z.S.: Studies on the aggregation of intuitionistic fuzzy and hesitant fuzzy information. Tech. Rep. (2011) Xia, M.M., Xu, Z.S.: Studies on the aggregation of intuitionistic fuzzy and hesitant fuzzy information. Tech. Rep. (2011)
41.
go back to reference Xia, M.M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52, 395–407 (2011)MathSciNetCrossRef Xia, M.M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52, 395–407 (2011)MathSciNetCrossRef
42.
go back to reference Yang, G., Li, X., Huo, L., Liu, Q.: A solving approach for fuzzy multi-objective linear fractional programming and application to an agricultural planting structure optimization problem. Chaos Solitons Fractals 141, 110352 (2020)MathSciNetCrossRef Yang, G., Li, X., Huo, L., Liu, Q.: A solving approach for fuzzy multi-objective linear fractional programming and application to an agricultural planting structure optimization problem. Chaos Solitons Fractals 141, 110352 (2020)MathSciNetCrossRef
Metadata
Title
An Interval-Valued Intuitionistic Hesitant Fuzzy Methodology and Application
Author
Shailendra Kumar Bharati
Publication date
10-08-2021
Publisher
Ohmsha
Published in
New Generation Computing / Issue 2/2021
Print ISSN: 0288-3635
Electronic ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-021-00132-4

Premium Partner