Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. An Introduction to Cell-Free Synthetic Biology

Author : Yuan Lu

Published in: Cell-Free Synthetic Biology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synthetic biology, as a new life science discipline, involves structured construction of biological systems using modular and standardized engineering concepts. It enables engineering biological parts, devices, and systems for versatile applications such as medical therapeutics, medical diagnostics, bioenergy production, and understanding biology. Considering the complexity, variability, and redundancy of living cellular systems, a view comes from scientists who focus on the engineering of biosystems in vitro from the bottom up. It is like solution biochemistry for better applications and opens up a new understanding about biology. Therefore, an enabling technology called cell-free synthetic biology has been rapidly adopted and developed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.H. Matthaei, M.W. Nirenberg, Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc. Natl. Acad. Sci. USA 47, 1580–1588 (1961)CrossRef J.H. Matthaei, M.W. Nirenberg, Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc. Natl. Acad. Sci. USA 47, 1580–1588 (1961)CrossRef
2.
go back to reference F. Villarreal, C. Tan, Cell-free systems in the new age of synthetic biology. Front. Chem. Sci. Eng., 1–8 (2017) F. Villarreal, C. Tan, Cell-free systems in the new age of synthetic biology. Front. Chem. Sci. Eng., 1–8 (2017)
3.
go back to reference J. Swartz, Developing cell-free biology for industrial applications. J. Ind. Microbiol. Biotechnol. 33(7), 476–485 (2006)MathSciNetCrossRef J. Swartz, Developing cell-free biology for industrial applications. J. Ind. Microbiol. Biotechnol. 33(7), 476–485 (2006)MathSciNetCrossRef
4.
go back to reference J.F. Zawada et al., Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol. Bioeng. 108(7), 1570–1578 (2011)CrossRef J.F. Zawada et al., Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol. Bioeng. 108(7), 1570–1578 (2011)CrossRef
5.
go back to reference E.D. Carlson et al., Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30(5), 1185–1194 (2012)CrossRef E.D. Carlson et al., Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30(5), 1185–1194 (2012)CrossRef
6.
go back to reference R. Ninomiya et al., Role of disulfide bond isomerase DsbC, calcium ions, and hemin in cell-free protein synthesis of active manganese peroxidase isolated from Phanerochaete chrysosporium. J. Biosci. Bioeng. 117(5), 652–657 (2014)CrossRef R. Ninomiya et al., Role of disulfide bond isomerase DsbC, calcium ions, and hemin in cell-free protein synthesis of active manganese peroxidase isolated from Phanerochaete chrysosporium. J. Biosci. Bioeng. 117(5), 652–657 (2014)CrossRef
7.
go back to reference R. Kelwick et al., Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab. Eng. 38, 370–381 (2016)CrossRef R. Kelwick et al., Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab. Eng. 38, 370–381 (2016)CrossRef
8.
go back to reference R. Gan, M.C. Jewett, A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe. Biotechnol. J. 9(5), 641–651 (2014)CrossRef R. Gan, M.C. Jewett, A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe. Biotechnol. J. 9(5), 641–651 (2014)CrossRef
9.
go back to reference T.U. Arumugam et al., Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery. Expert Rev Vaccines 13(1), 75–85 (2014)CrossRef T.U. Arumugam et al., Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery. Expert Rev Vaccines 13(1), 75–85 (2014)CrossRef
10.
go back to reference J.A. Douthwaite, Eukaryotic ribosome display selection using rabbit reticulocyte lysate. Methods Mol. Biol. 805, 45–57 (2012)CrossRef J.A. Douthwaite, Eukaryotic ribosome display selection using rabbit reticulocyte lysate. Methods Mol. Biol. 805, 45–57 (2012)CrossRef
11.
go back to reference A.K. Brodel, A. Sonnabend, S. Kubick, Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng. 111(1), 25–36 (2014)CrossRef A.K. Brodel, A. Sonnabend, S. Kubick, Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng. 111(1), 25–36 (2014)CrossRef
12.
go back to reference M.C. Jewett, J.R. Swartz, Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86(1), 19–26 (2004)CrossRef M.C. Jewett, J.R. Swartz, Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86(1), 19–26 (2004)CrossRef
13.
go back to reference Y. Shimizu et al., Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19(8), 751–755 (2001)CrossRef Y. Shimizu et al., Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19(8), 751–755 (2001)CrossRef
14.
go back to reference Y. Kuruma, T. Ueda, The PURE system for the cell-free synthesis of membrane proteins. Nat. Protoc. 10(9), 1328–1344 (2015)CrossRef Y. Kuruma, T. Ueda, The PURE system for the cell-free synthesis of membrane proteins. Nat. Protoc. 10(9), 1328–1344 (2015)CrossRef
15.
go back to reference Y. Shimizu, T. Kanamori, T. Ueda, Protein synthesis by pure translation systems. Methods 36(3), 299–304 (2005)CrossRef Y. Shimizu, T. Kanamori, T. Ueda, Protein synthesis by pure translation systems. Methods 36(3), 299–304 (2005)CrossRef
16.
go back to reference K. Pardee et al., Portable, on-demand biomolecular manufacturing. Cell 167(1), 248–259 (2016)CrossRef K. Pardee et al., Portable, on-demand biomolecular manufacturing. Cell 167(1), 248–259 (2016)CrossRef
17.
go back to reference M.T. Smith et al., Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques 56(4), 186–193 (2014)CrossRef M.T. Smith et al., Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques 56(4), 186–193 (2014)CrossRef
18.
go back to reference K. Pardee et al., Paper-based synthetic gene networks. Cell 159(4), 940–954 (2014)CrossRef K. Pardee et al., Paper-based synthetic gene networks. Cell 159(4), 940–954 (2014)CrossRef
19.
go back to reference K. Pardee et al., Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5), 1255–1266 (2016)CrossRef K. Pardee et al., Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5), 1255–1266 (2016)CrossRef
Metadata
Title
An Introduction to Cell-Free Synthetic Biology
Author
Yuan Lu
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-1171-0_1