Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

03-03-2021

An Introduction to Neural Networks in SCMA

Authors: Madhura Kanzarkar, M. S. S. Rukmini, Rajeshree Raut

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sparse Code Multiple Access (SCMA) has proved to be a fascinating research in order to curtail the complications faced by the wireless communication networks. SCMA being a Non-Orthogonal Multiple Access technique evinces to be an outstanding candidate, to cater the complications faced by 5G communication networks to improve the bit error rate and reduce the complexity of decoding the transmitted signal from received signal. This paper explains the concept of SCMA by explaining the basic structure of encoder, decoder and codebook design with the help of neural networks. It explains the concept of reducing the complexity of the traditional decoder of the SCMA by implementing Neural Networks. Further sections explain the use of Convolutional Neural Networks for blind decoding, that outperforms the complexity of decoding carried by conventional SCMA using Message Passing Algorithm. This further explains the use of Deep Neural Networks for designing the codebook and decoding it, by adopting an autoencoder structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System level performance evaluation of downlink non-orthogonal multiple access (NOMA), In: Proc. IEEE Annu. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), London, U.K., pp. 611–615. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System level performance evaluation of downlink non-orthogonal multiple access (NOMA), In: Proc. IEEE Annu. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), London, U.K., pp. 611–615.
2.
go back to reference Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions challenges opportunities and future research trends. IEEE Communication Maganize, 53(9), 74–81.CrossRef Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions challenges opportunities and future research trends. IEEE Communication Maganize, 53(9), 74–81.CrossRef
5.
go back to reference Morocho-Cayamcela, M. E., & Njoku, J. N., Park, J. & Lim. W. (2020). Learning to Communicate with Autoencoders: Rethinking Wireless Systems with Deep Learning, 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, pp. 308 311, https://doi.org/10.1109/ICAIIC48513.2020.9065246. Morocho-Cayamcela, M. E., & Njoku, J. N., Park, J. & Lim. W. (2020). Learning to Communicate with Autoencoders: Rethinking Wireless Systems with Deep Learning, 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, pp. 308 311, https://​doi.​org/​10.​1109/​ICAIIC48513.​2020.​9065246.
6.
go back to reference O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef
7.
go back to reference Morocho-Cayamcela M. E., & Lim, W. (2019). Proposed cost function using wireless propagation for self-organizing networks, In: The Korean Institute of Communications and Information Sciences Fall Conference 2019 (KICS 2019), Seoul, South Korea, 11, pp. 172–174. Morocho-Cayamcela M. E., & Lim, W. (2019). Proposed cost function using wireless propagation for self-organizing networks, In: The Korean Institute of Communications and Information Sciences Fall Conference 2019 (KICS 2019), Seoul, South Korea, 11, pp. 172–174.
8.
go back to reference Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2018). Deep learning in physical layer communications. Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2018). Deep learning in physical layer communications.
9.
go back to reference Wang et al. Q. (2018). Supervised and semi-supervised deep neural networks for CSI-based authentication. Wang et al. Q. (2018). Supervised and semi-supervised deep neural networks for CSI-based authentication.
10.
go back to reference Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning, in the elements of statistical learning (pp. 485–585). New York: Springer.CrossRef Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning, in the elements of statistical learning (pp. 485–585). New York: Springer.CrossRef
11.
go back to reference Dörner, S., Cammerer, S., Hoydis, J., & Brink, S. T. (2018). Deep learning based communication over the air. IEEE Journal of Selected Topics in Signal Processing, 12(1), 132–143.CrossRef Dörner, S., Cammerer, S., Hoydis, J., & Brink, S. T. (2018). Deep learning based communication over the air. IEEE Journal of Selected Topics in Signal Processing, 12(1), 132–143.CrossRef
12.
13.
go back to reference Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT Press.MATH Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge: MIT Press.MATH
14.
go back to reference Zhang, C., Patras, P. & Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey, In: IEEE Communications Surveys IEEE 18th Int. Workshop Signal Process. Advance Wireless Communication & Tutorials, vol. 21, no. 3, pp. 2224–2287, thirdquarter 2019, doi: https://doi.org/10.1109/COMST.2019.2904897. Zhang, C., Patras, P. & Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey, In: IEEE Communications Surveys IEEE 18th Int. Workshop Signal Process. Advance Wireless Communication & Tutorials, vol. 21, no. 3, pp. 2224–2287, thirdquarter 2019, doi: https://​doi.​org/​10.​1109/​COMST.​2019.​2904897.
15.
go back to reference Nachmani, E., Be’ery, Y., & Burshtein, D. Learning to decode linear codes using deep learning, In: Proceedings 54th Annual Allerton Conference on Communication, Control, and Computing, 2016, pp. 341–346. Nachmani, E., Be’ery, Y., & Burshtein, D. Learning to decode linear codes using deep learning, In: Proceedings 54th Annual Allerton Conference on Communication, Control, and Computing, 2016, pp. 341–346.
16.
go back to reference Nachmani, E., Marciano, E., Burshtein, D., & Be’ery, Y. (2017). RNN decoding of linear block codes. Nachmani, E., Marciano, E., Burshtein, D., & Be’ery, Y. (2017). RNN decoding of linear block codes.
18.
go back to reference Samuel, N., Diskin, T., & Wiesel, A. (2017). Deep MIMO detection, In: proceedings, 2017, pp. 690–694. Samuel, N., Diskin, T., & Wiesel, A. (2017). Deep MIMO detection, In: proceedings, 2017, pp. 690–694.
21.
go back to reference Zhang, W., Liu, K., Zhang, W., Zhang, Y., & Jason, Gu. (2016). Deep neural networks for wireless localization in indoor and outdoor environment. Neurocomputing, 194, 279–287.CrossRef Zhang, W., Liu, K., Zhang, W., Zhang, Y., & Jason, Gu. (2016). Deep neural networks for wireless localization in indoor and outdoor environment. Neurocomputing, 194, 279–287.CrossRef
22.
go back to reference Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions. IEEE Access, 7, 137184–137.CrossRef Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions. IEEE Access, 7, 137184–137.CrossRef
24.
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp. 1026–1034. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp. 1026–1034.
26.
go back to reference Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., & Pollin, S. (2018). Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Transactions on Cognitive Communications and Networking, 4(3), 433–445.CrossRef Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., & Pollin, S. (2018). Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Transactions on Cognitive Communications and Networking, 4(3), 433–445.CrossRef
27.
go back to reference Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y.-D. (2019). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727.CrossRef Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y.-D. (2019). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727.CrossRef
28.
go back to reference Wang, Y., Liu, M., Yang, J., & Gui, G. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.CrossRef Wang, Y., Liu, M., Yang, J., & Gui, G. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.CrossRef
29.
go back to reference O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.CrossRef O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.CrossRef
30.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 119–130.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 119–130.CrossRef
31.
go back to reference Vieira, J., Leitinger, E., Sarajlic, M., Li, X., & Tufvesson, F. (2017). Deep convolutional neural networks for massive MIMO fingerprint-based positioning. In: Proceedings 28th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications. Vieira, J., Leitinger, E., Sarajlic, M., Li, X., & Tufvesson, F. (2017). Deep convolutional neural networks for massive MIMO fingerprint-based positioning. In: Proceedings 28th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications.
32.
go back to reference Neumann, D., Utschick, W., & Wiese, T. (2017). Deep Channel Estimation, In: Proceedings 21th International ITG Workshop on Smart Antennas, pages 1–6. VDE. Neumann, D., Utschick, W., & Wiese, T. (2017). Deep Channel Estimation, In: Proceedings 21th International ITG Workshop on Smart Antennas, pages 1–6. VDE.
33.
go back to reference Wang, B., Wang, K., Lu, Z., Xie, T., & Quan, J. (2015). Comparison study of non-orthogonal multiple access schemes for 5g. In: Broadband Multimedia Systems and Broadcasting (BMSB), 2015 IEEE International Symposium on, pp. 1–5. Wang, B., Wang, K., Lu, Z., Xie, T., & Quan, J. (2015). Comparison study of non-orthogonal multiple access schemes for 5g. In: Broadband Multimedia Systems and Broadcasting (BMSB), 2015 IEEE International Symposium on, pp. 1–5.
34.
go back to reference Saito Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pp. 1–5. Saito Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pp. 1–5.
35.
go back to reference Nikopour, H., & Baligh, H. (2013). Sparse Code Multiple Access. In: IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications:Fundamentals and PHY Track. Nikopour, H., & Baligh, H. (2013). Sparse Code Multiple Access. In: IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications:Fundamentals and PHY Track.
36.
go back to reference Wu, Y., Wang, C., Chen, Y., & Bayesteh, A. (2017). Sparse Code Multiple Access for 5g Radio Transmission. In: Vehicular Technology Conference (VTC-Fall), 2017 IEEE 86th, pp. 1–6. Wu, Y., Wang, C., Chen, Y., & Bayesteh, A. (2017). Sparse Code Multiple Access for 5g Radio Transmission. In: Vehicular Technology Conference (VTC-Fall), 2017 IEEE 86th, pp. 1–6.
37.
go back to reference Nikopour, H. & Baligh, M. (2016). Systems and Methods for Sparse Code Multiple Access. January 19 2016. US Patent 9,240,853. Nikopour, H. & Baligh, M. (2016). Systems and Methods for Sparse Code Multiple Access. January 19 2016. US Patent 9,240,853.
38.
go back to reference Xiao, B., Xiao, K., Zhang, S., Chen, Z., Xia, B., & Liu, H. (2015). Iterative detection and decoding for SCMA systems with LDPC codes. In: Wireless Communications & Signal Processing (WCSP), 2015 International Conference on, pp. 1–5. Xiao, B., Xiao, K., Zhang, S., Chen, Z., Xia, B., & Liu, H. (2015). Iterative detection and decoding for SCMA systems with LDPC codes. In: Wireless Communications & Signal Processing (WCSP), 2015 International Conference on, pp. 1–5.
39.
go back to reference Liu, J., Wu, G., Li, S., & Tirkkonen, O. (2016). On fixed point implementation of Log-MPA for SCMA Signal. IEEE Wireless Communications Letters, 5(3), 324–327.CrossRef Liu, J., Wu, G., Li, S., & Tirkkonen, O. (2016). On fixed point implementation of Log-MPA for SCMA Signal. IEEE Wireless Communications Letters, 5(3), 324–327.CrossRef
40.
go back to reference Alam, M., & Zhang, Q. (2017). Performance study of SCMA codebook design. In: Wireless Communications and Networking Conference (WCNC), 2017 IEEE, pp. 1–5. Alam, M., & Zhang, Q. (2017). Performance study of SCMA codebook design. In: Wireless Communications and Networking Conference (WCNC), 2017 IEEE, pp. 1–5.
41.
go back to reference Madhura, K., Raut, R., & Rukmini, M. S. S. (2019). A study on codebook design techniques in SCMA. International Journal of Control and Automation, 12, 31–40. Madhura, K., Raut, R., & Rukmini, M. S. S. (2019). A study on codebook design techniques in SCMA. International Journal of Control and Automation, 12, 31–40.
43.
go back to reference Liu, S., Wang, J., Bao, J., & Liu, C. (2018). Optimized SCMA codebook design by QAM constellation segmentation with maximized MED. IEEE Access, 6, 63232–63242. Liu, S., Wang, J., Bao, J., & Liu, C. (2018). Optimized SCMA codebook design by QAM constellation segmentation with maximized MED. IEEE Access, 6, 63232–63242.
44.
go back to reference Simonyan, K. & Zisserm, A. (2014). Very deep convolutional networks for large-scale image recognition. Simonyan, K. & Zisserm, A. (2014). Very deep convolutional networks for large-scale image recognition.
45.
go back to reference Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.MATH Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.MATH
46.
go back to reference O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks, In: Proceedings of EANN, Aberdeen, UK, pp213–26. O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks, In: Proceedings of EANN, Aberdeen, UK, pp213–26.
47.
go back to reference O’Shea, T. J., Karra K., & Clancy T. C. (2016). Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. In: Proceedings of ISSPIT, Limassol, Cyprus, pp. 223–228. O’Shea, T. J., Karra K., & Clancy T. C. (2016). Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. In: Proceedings of ISSPIT, Limassol, Cyprus, pp. 223–228.
48.
go back to reference Hoshyar, R., Razavi, R. & Al-Imari, M. (2010). LDS-OFDM an Efficient Multiple Access Technique. In: 2010 IEEE 71st Vehicular Technology Conference, Taipei, 2010, pp. 1–5. Hoshyar, R., Razavi, R. & Al-Imari, M. (2010). LDS-OFDM an Efficient Multiple Access Technique. In: 2010 IEEE 71st Vehicular Technology Conference, Taipei, 2010, pp. 1–5.
49.
go back to reference Hoshyar, R., Wathan, F. P., & Tafazolli, R. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Transactions on Signal Processing, 56(4), 1616–1626.MathSciNetCrossRef Hoshyar, R., Wathan, F. P., & Tafazolli, R. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Transactions on Signal Processing, 56(4), 1616–1626.MathSciNetCrossRef
50.
go back to reference Abidi, I., Hizem, M., Ahriz, I., Cherif, M. & Bouallegue, R. (2019). Convolutional neural networks for blind decoding in sparse code multiple access, In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, pp. 2007-2012. Abidi, I., Hizem, M., Ahriz, I., Cherif, M. & Bouallegue, R. (2019). Convolutional neural networks for blind decoding in sparse code multiple access, In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, pp. 2007-2012.
51.
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems, 6, 1097–1105. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems, 6, 1097–1105.
52.
go back to reference Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A Convolutional Neural-Network approach. IEEE Transactions on Neural Networks, 8(1), 98–113.CrossRef Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A Convolutional Neural-Network approach. IEEE Transactions on Neural Networks, 8(1), 98–113.CrossRef
53.
go back to reference Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: Potential limitations, and future directions. IEEE Access, 7, 137184–137206.CrossRef Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: Potential limitations, and future directions. IEEE Access, 7, 137184–137206.CrossRef
54.
go back to reference Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
55.
go back to reference Kim, M., Kim, N., Lee, W., & Cho, D. (2018). Deep learning-aided SCMA. IEEE Communications Letters, 22(4), 720–723.CrossRef Kim, M., Kim, N., Lee, W., & Cho, D. (2018). Deep learning-aided SCMA. IEEE Communications Letters, 22(4), 720–723.CrossRef
57.
go back to reference Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.MathSciNetMATH Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371–3408.MathSciNetMATH
58.
go back to reference Lin, Jinzhi, Feng, Shengzhong, Zhang, Yun, Yang, Zhile, & Zhang, Yong. (2020). A novel deep neural network based approach for sparse code multiple access. Neurocomputing, 382, 52–63.CrossRef Lin, Jinzhi, Feng, Shengzhong, Zhang, Yun, Yang, Zhile, & Zhang, Yong. (2020). A novel deep neural network based approach for sparse code multiple access. Neurocomputing, 382, 52–63.CrossRef
59.
go back to reference Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with random weights. Neurocomputing, 275, 278–287.CrossRef Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with random weights. Neurocomputing, 275, 278–287.CrossRef
61.
go back to reference Sheth, K., Patel, K., Shah, H., Tanwar, S., Gupta, R., & Kumar, N. (2020). A taxonomy of AI techniques for 6G communication networks. Computer Communications, 161, 279–303.CrossRef Sheth, K., Patel, K., Shah, H., Tanwar, S., Gupta, R., & Kumar, N. (2020). A taxonomy of AI techniques for 6G communication networks. Computer Communications, 161, 279–303.CrossRef
Metadata
Title
An Introduction to Neural Networks in SCMA
Authors
Madhura Kanzarkar
M. S. S. Rukmini
Rajeshree Raut
Publication date
03-03-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08222-8

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue