Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2015

01-04-2015 | Research Paper

An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid

Authors: Bo Yu, Xiaoyun Jiang, Haitao Qi

Published in: Acta Mechanica Sinica | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we first obtain the fractional sensitivity equation by means of the digamma function, and then we propose an efficient numerical method, that is, the Levenberg–Marquardt algorithm based on a fractional derivative, to estimate the unknown order of a Riemann–Liouville fractional derivative. In order to demonstrate the effectiveness of the proposed numerical method, two cases in which the measurement values contain random measurement error or not are considered. The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid.

Graphical Abstract

In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we obtain the fractional sensitivity equation by means of the digamma function. Numerical simulations demonstrate the effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1, 161–198 (1971)CrossRef Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1, 161–198 (1971)CrossRef
2.
go back to reference Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)MATHMathSciNet Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)MATHMathSciNet
3.
go back to reference Tan, W.C., Fu, C., Xie, W., et al.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 183901–183903 (2007) Tan, W.C., Fu, C., Xie, W., et al.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 183901–183903 (2007)
4.
go back to reference Ning, T.H., Jiang, X.Y.: Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation. Acta. Mech. Sin. 27, 994–1000 (2011)MATHMathSciNet Ning, T.H., Jiang, X.Y.: Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation. Acta. Mech. Sin. 27, 994–1000 (2011)MATHMathSciNet
5.
go back to reference Klafter, J.: Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)CrossRef Klafter, J.: Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)CrossRef
6.
go back to reference Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. J. Phys. A 45, 485101 (2012)MathSciNet Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. J. Phys. A 45, 485101 (2012)MathSciNet
7.
go back to reference Yu, B., Jiang, X.Y.: A fractional anomalous diffusion model and numerical simulation for sodium ion transport in the intestinal wall. Adv. Math. Phys. 2013, 479634 (2013)MathSciNet Yu, B., Jiang, X.Y.: A fractional anomalous diffusion model and numerical simulation for sodium ion transport in the intestinal wall. Adv. Math. Phys. 2013, 479634 (2013)MathSciNet
8.
go back to reference Tan, W.C., Xu, M.Y.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta. Mech. Sin. 20, 471–476 (2004)MathSciNet Tan, W.C., Xu, M.Y.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta. Mech. Sin. 20, 471–476 (2004)MathSciNet
9.
go back to reference Qi, H.T., Xu, M.Y.: Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta. Mech. Sin. 23, 463–469 (2007)MATHMathSciNet Qi, H.T., Xu, M.Y.: Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta. Mech. Sin. 23, 463–469 (2007)MATHMathSciNet
10.
go back to reference Shan, L., Tong, D., Xue, L.: Unsteady flow of non-Newtonian visco-elastic fluid in dual-porosity media with the fractional derivative. J. Hydrodyn. Ser. B 21, 705–713 (2009) Shan, L., Tong, D., Xue, L.: Unsteady flow of non-Newtonian visco-elastic fluid in dual-porosity media with the fractional derivative. J. Hydrodyn. Ser. B 21, 705–713 (2009)
11.
go back to reference Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 405, 4188–4194 (2010) Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 405, 4188–4194 (2010)
12.
go back to reference Mahmood, A., Parveen, S., Ara, A., et al.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. Numer. Simul. 14, 3309–3319 (2009)MATH Mahmood, A., Parveen, S., Ara, A., et al.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. Numer. Simul. 14, 3309–3319 (2009)MATH
13.
go back to reference Shen, F., Tan, W.C., Zhao, Y., et al.: The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, 1072–1080 (2006)MATHMathSciNet Shen, F., Tan, W.C., Zhao, Y., et al.: The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, 1072–1080 (2006)MATHMathSciNet
14.
go back to reference Fetecau, C., Athar, M., Fetecau, C.: Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. Comput. Math. Appl. 57, 596–603 (2009)MATHMathSciNet Fetecau, C., Athar, M., Fetecau, C.: Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. Comput. Math. Appl. 57, 596–603 (2009)MATHMathSciNet
15.
go back to reference Zheng, L., Zhao, F., Zhang, X.: Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate. Nonlinear Anal. 11, 3744–3751 (2010)MATHMathSciNet Zheng, L., Zhao, F., Zhang, X.: Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate. Nonlinear Anal. 11, 3744–3751 (2010)MATHMathSciNet
16.
go back to reference Vieru, D., Fetecau, C., Sohail, A.: Flow due to a plate that applies an accelerated shear to a second grade fluid between two parallel walls perpendicular to the plate. Z. Angew. Math. Phys. 62, 161–172 (2011)MATHMathSciNet Vieru, D., Fetecau, C., Sohail, A.: Flow due to a plate that applies an accelerated shear to a second grade fluid between two parallel walls perpendicular to the plate. Z. Angew. Math. Phys. 62, 161–172 (2011)MATHMathSciNet
17.
go back to reference Kang, J.H., Xu, M.Y.: Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. Acta Mech. Sin. 25, 181–186 (2009)MATHMathSciNet Kang, J.H., Xu, M.Y.: Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. Acta Mech. Sin. 25, 181–186 (2009)MATHMathSciNet
18.
go back to reference Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus Continuum Mechanics, pp. 291–348. Springer, Vienna (1997)CrossRef Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus Continuum Mechanics, pp. 291–348. Springer, Vienna (1997)CrossRef
19.
go back to reference Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In: Keil, F., Mackens, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)CrossRef Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In: Keil, F., Mackens, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)CrossRef
20.
go back to reference Müller, S., Kästner, M., Brummund, J., et al.: On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput. Mech. 51, 999–1012 (2013)MATHMathSciNet Müller, S., Kästner, M., Brummund, J., et al.: On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput. Mech. 51, 999–1012 (2013)MATHMathSciNet
21.
go back to reference Chen, C.M., Liu, F., Anh, V.: A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 223, 777–789 (2009)MATHMathSciNet Chen, C.M., Liu, F., Anh, V.: A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 223, 777–789 (2009)MATHMathSciNet
22.
go back to reference Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 264, 163–177 (2013)MATHMathSciNet Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 264, 163–177 (2013)MATHMathSciNet
23.
go back to reference Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNet Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNet
24.
go back to reference Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)MATHMathSciNet Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)MATHMathSciNet
25.
go back to reference Yu, B., Jiang, X.Y., Xu, H.Y.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms (2014). doi:10.1007/s11075-014-9877-1 Yu, B., Jiang, X.Y., Xu, H.Y.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms (2014). doi:10.​1007/​s11075-014-9877-1
26.
go back to reference Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)MATHMathSciNet Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)MATHMathSciNet
28.
go back to reference Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order differential operator in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009) Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order differential operator in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)
29.
go back to reference Özisik, M.N.: Inverse Heat Transfer: Fundamentals and Applications. CRC Press, Boca Raton (2000) Özisik, M.N.: Inverse Heat Transfer: Fundamentals and Applications. CRC Press, Boca Raton (2000)
30.
go back to reference Battaglia, J.L., Cois, O., Puigsegur, L., et al.: Solving an invese heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transf. 44, 2671–2680 (2001)MATH Battaglia, J.L., Cois, O., Puigsegur, L., et al.: Solving an invese heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transf. 44, 2671–2680 (2001)MATH
31.
go back to reference Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)MATHMathSciNet Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)MATHMathSciNet
32.
go back to reference Zhang, Y., Xu, X.: Inverse source problem for a fractional diffusion equation. Inverse Prob. 27, 035010 (2011) Zhang, Y., Xu, X.: Inverse source problem for a fractional diffusion equation. Inverse Prob. 27, 035010 (2011)
33.
go back to reference Cheng, J., Nakagawa, J., Yamamoto, M., et al.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Prob. 25, 115002 (2009)MathSciNet Cheng, J., Nakagawa, J., Yamamoto, M., et al.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Prob. 25, 115002 (2009)MathSciNet
34.
go back to reference Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55, 2095–2101 (2012) Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55, 2095–2101 (2012)
35.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
36.
go back to reference Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)MATHMathSciNet Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)MATHMathSciNet
37.
go back to reference Marquardt, D.W.: An algorithm for the least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)MATHMathSciNet Marquardt, D.W.: An algorithm for the least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)MATHMathSciNet
38.
go back to reference Medina, L., Moll, V.: The integrals in Gradshteyn and Ryzhik. Part 10: the Digamma function, scientia series A: mathematical. Sciences 17, 45–66 (2009)MATHMathSciNet Medina, L., Moll, V.: The integrals in Gradshteyn and Ryzhik. Part 10: the Digamma function, scientia series A: mathematical. Sciences 17, 45–66 (2009)MATHMathSciNet
Metadata
Title
An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid
Authors
Bo Yu
Xiaoyun Jiang
Haitao Qi
Publication date
01-04-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0408-7

Other articles of this Issue 2/2015

Acta Mechanica Sinica 2/2015 Go to the issue

Premium Partners