Skip to main content
Top
Published in:

01-12-2023 | Original Article

An investigation in detection and mitigation of smishing using machine learning techniques

Authors: Mohd Shoaib, Mohammad Sarosh Umar

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the growing threat of smishing, which involves malicious text messages targeting mobile users. It discusses the prevalence of smishing due to the widespread use of mobile phones and the vulnerabilities they present. The study explores various detection methods, including machine learning techniques like neural networks and signature matching. It also highlights the limitations of current approaches and the need for more advanced algorithms. The research analyzes the performance metrics and datasets used in different studies, providing a comparative overview of the field. Additionally, it discusses the challenges faced in smishing detection, such as the difficulty in distinguishing between spam and smishing messages, and proposes future directions for research, including the development of more effective classifiers and hybrid algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adewole KS, Anuar NB, Kamsin A, Sangaiah AK (2019) SMSAD: a framework for spam message and spam account detection. Multimed Tools Appl 78:3925–3960CrossRef Adewole KS, Anuar NB, Kamsin A, Sangaiah AK (2019) SMSAD: a framework for spam message and spam account detection. Multimed Tools Appl 78:3925–3960CrossRef
go back to reference Akande ON, Gbenle O, Abikoye OC, Jimoh RG, Akande HB, Balogun AO, Fatokun A (2022) SMSPROTECT: an automatic smishing detection mobile application. ICT Express Akande ON, Gbenle O, Abikoye OC, Jimoh RG, Akande HB, Balogun AO, Fatokun A (2022) SMSPROTECT: an automatic smishing detection mobile application. ICT Express
go back to reference Aldabbas H, Amin R (2021) A novel mechanism to handle address spoofing attacks in SDN based IoT. Cluster Comput 24(4):3011–3026CrossRef Aldabbas H, Amin R (2021) A novel mechanism to handle address spoofing attacks in SDN based IoT. Cluster Comput 24(4):3011–3026CrossRef
go back to reference Boukari BE, Ravi A, Msahli M (2021) ML detection for smishing frauds. In: 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC) (pp 1–2). IEEE Boukari BE, Ravi A, Msahli M (2021) ML detection for smishing frauds. In: 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC) (pp 1–2). IEEE
go back to reference Butt UA, Amin R, Aldabbas H, Mohan S, Alouffi B and Ahmadian, A (2022) Cloud-based email phishing attack using machine and DL algorithm. Complex Intell Syst. pp1–28 Butt UA, Amin R, Aldabbas H, Mohan S, Alouffi B and Ahmadian, A (2022) Cloud-based email phishing attack using machine and DL algorithm. Complex Intell Syst. pp1–28
go back to reference Choudhary N, Jain AK (2017) Towards filtering of SMS spam messages using ML based technique. In: International Conference on Advanced Informatics for Computing Research (pp 18–30), Springer, Singapore Choudhary N, Jain AK (2017) Towards filtering of SMS spam messages using ML based technique. In: International Conference on Advanced Informatics for Computing Research (pp 18–30), Springer, Singapore
go back to reference Du J, Raza SH, Ahmad M, Alam I, Dar SH, Habib MA (2022) Digital forensics as advanced ransomware pre-attack detection algorithm for endpoint data protection. Security and Communication Networks Du J, Raza SH, Ahmad M, Alam I, Dar SH, Habib MA (2022) Digital forensics as advanced ransomware pre-attack detection algorithm for endpoint data protection. Security and Communication Networks
go back to reference Fang Z, Liu Q, Zhang Y, Wang K, Wang Z, Wu Q (2017) A static technique for detecting input validation vulnerabilities in Android apps. Sci China Inform Sci 60(5):1–16CrossRef Fang Z, Liu Q, Zhang Y, Wang K, Wang Z, Wu Q (2017) A static technique for detecting input validation vulnerabilities in Android apps. Sci China Inform Sci 60(5):1–16CrossRef
go back to reference Fournier A, El Khoury F, Pierre S (2021) A client/server malware detection model based on machine learning for android devices. IoT 2(3):355–374CrossRef Fournier A, El Khoury F, Pierre S (2021) A client/server malware detection model based on machine learning for android devices. IoT 2(3):355–374CrossRef
go back to reference Gadde S, Lakshmanarao A, Satyanarayana S (2021) SMS spam detection using machine learning and deep learning techniques. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp 358-362). IEEE Gadde S, Lakshmanarao A, Satyanarayana S (2021) SMS spam detection using machine learning and deep learning techniques. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp 358-362). IEEE
go back to reference Gandotra E, Gupta D (2021) Improving spoofed website detection using machine learning. Cybernet Syst 52(2):169–190CrossRef Gandotra E, Gupta D (2021) Improving spoofed website detection using machine learning. Cybernet Syst 52(2):169–190CrossRef
go back to reference Ghourabi A, Mahmood MA, Alzubi QM (2020) A hybrid CNN-LSTM model for SMS spam detection in Arabic and english messages. Future Int 12(9):156CrossRef Ghourabi A, Mahmood MA, Alzubi QM (2020) A hybrid CNN-LSTM model for SMS spam detection in Arabic and english messages. Future Int 12(9):156CrossRef
go back to reference Goel D, Jain AK (2018) Smishing-classifier: a novel framework for detection of smishing attack in mobile environment. In: Smart and Innovative Trends in Next Generation Computing Technologies: Third International Conference, NGCT 2017, Dehradun, India, October 30-31, 2017, Revised Selected Papers, Part II 3 (pp 502-512). Springer Singapore Goel D, Jain AK (2018) Smishing-classifier: a novel framework for detection of smishing attack in mobile environment. In: Smart and Innovative Trends in Next Generation Computing Technologies: Third International Conference, NGCT 2017, Dehradun, India, October 30-31, 2017, Revised Selected Papers, Part II 3 (pp 502-512). Springer Singapore
go back to reference GuangJun L, Nazir S, Khan HU, Haq AU (2020) Spam detection approach for secure mobile message communication using ML algorithms. Secur Commun Netw GuangJun L, Nazir S, Khan HU, Haq AU (2020) Spam detection approach for secure mobile message communication using ML algorithms. Secur Commun Netw
go back to reference Gupta V, Mehta A, Goel A, Dixit U, Pandey AC (2019) Spam detection using ensemble learning. In: Harmony search and nature inspired optimization algorithms (pp 661–668), Springer, Singapore Gupta V, Mehta A, Goel A, Dixit U, Pandey AC (2019) Spam detection using ensemble learning. In: Harmony search and nature inspired optimization algorithms (pp 661–668), Springer, Singapore
go back to reference Heartfield R, Loukas G (2018) Detecting semantic social engineering attacks with the weakest link: implementation and empirical evaluation of a human-as-a-security-sensor framework. Comput Secur 76:101–127CrossRef Heartfield R, Loukas G (2018) Detecting semantic social engineering attacks with the weakest link: implementation and empirical evaluation of a human-as-a-security-sensor framework. Comput Secur 76:101–127CrossRef
go back to reference Jain AK, Gupta BB (2018) Rule-based framework for detection of smishing messages in mobile environment. Procedia Comput Sci 125:617–623CrossRef Jain AK, Gupta BB (2018) Rule-based framework for detection of smishing messages in mobile environment. Procedia Comput Sci 125:617–623CrossRef
go back to reference Jain AK, Gupta BB (2019) Feature based approach for detection of smishing messages in the mobile environment. J Inform Technol Res (JITR) 12(2):17–35CrossRef Jain AK, Gupta BB (2019) Feature based approach for detection of smishing messages in the mobile environment. J Inform Technol Res (JITR) 12(2):17–35CrossRef
go back to reference Jain G, Sharma M, Agarwal B (2019) Spam detection in social media using convolutional and long short term memory neural network. Anna Math Artific Intell 85(1):21–44CrossRef Jain G, Sharma M, Agarwal B (2019) Spam detection in social media using convolutional and long short term memory neural network. Anna Math Artific Intell 85(1):21–44CrossRef
go back to reference Jain AK, Goel D, Agarwal S, Singh Y, Bajaj G (2020) Predicting spam messages using back propagation neural network. Wireless Personal Commun 110:403–422CrossRef Jain AK, Goel D, Agarwal S, Singh Y, Bajaj G (2020) Predicting spam messages using back propagation neural network. Wireless Personal Commun 110:403–422CrossRef
go back to reference Jain AK, Gupta BB, Kaur K, Bhutani P, Alhalabi W, Almomani A (2022) A content and URL analysis-based efficient approach to detect smishing SMS in intelligent systems. Int J Intell Syst 37(12):11117–11141CrossRef Jain AK, Gupta BB, Kaur K, Bhutani P, Alhalabi W, Almomani A (2022) A content and URL analysis-based efficient approach to detect smishing SMS in intelligent systems. Int J Intell Syst 37(12):11117–11141CrossRef
go back to reference Joo JW, Moon SY, Singh S, Park JH (2017a) S-Detector: an enhanced security model for detecting Smishing attack for mobile computing. Telecommun Syst 66:29–38CrossRef Joo JW, Moon SY, Singh S, Park JH (2017a) S-Detector: an enhanced security model for detecting Smishing attack for mobile computing. Telecommun Syst 66:29–38CrossRef
go back to reference Joo JW, Moon SY, Singh S, Park JH (2017b) S-Detector: an enhanced security model for detecting Smishing attack for mobile computing. Telecommun Syst 66:29–38CrossRef Joo JW, Moon SY, Singh S, Park JH (2017b) S-Detector: an enhanced security model for detecting Smishing attack for mobile computing. Telecommun Syst 66:29–38CrossRef
go back to reference Kim D, Kim YH, Shin D, Shin D (2019) Fast attack detection system using log analysis and attack tree generation. Cluster Comput 22:1827–1835CrossRef Kim D, Kim YH, Shin D, Shin D (2019) Fast attack detection system using log analysis and attack tree generation. Cluster Comput 22:1827–1835CrossRef
go back to reference Kumar PP, Jaya T, Rajendran V (2021) SI-BBA–a novel phishing website detection based on Swarm intelligence with DL. Mater Today: Proceed Kumar PP, Jaya T, Rajendran V (2021) SI-BBA–a novel phishing website detection based on Swarm intelligence with DL. Mater Today: Proceed
go back to reference Liu X, Lu H, Nayak A (2021) A spam transformer model for SMS spam detection. IEEE Access 9:80253–80263CrossRef Liu X, Lu H, Nayak A (2021) A spam transformer model for SMS spam detection. IEEE Access 9:80253–80263CrossRef
go back to reference Mehtab A, Shahid WB, Yaqoob T, Amjad MF, Abbas H, Afzal H, Saqib MN (2020) AdDroid: rule-based machine learning framework for android malware analysis. Mobile Netw Appl 25:180–192CrossRef Mehtab A, Shahid WB, Yaqoob T, Amjad MF, Abbas H, Afzal H, Saqib MN (2020) AdDroid: rule-based machine learning framework for android malware analysis. Mobile Netw Appl 25:180–192CrossRef
go back to reference Mishra S, Soni D (2019) A content-based approach for detecting smishing in mobile environment. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India Mishra S, Soni D (2019) A content-based approach for detecting smishing in mobile environment. In: Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India
go back to reference Mishra S, Soni D (2021) Dsmishsms-a system to detect smishing sms. Neural Comput Appl pp 1–18 Mishra S, Soni D (2021) Dsmishsms-a system to detect smishing sms. Neural Comput Appl pp 1–18
go back to reference Mishra S, Soni D (2020) Smishing detector: a security model to detect smishing through SMS content analysis and URL behavior analysis. Future Gener Comput Syst 108:803–815CrossRef Mishra S, Soni D (2020) Smishing detector: a security model to detect smishing through SMS content analysis and URL behavior analysis. Future Gener Comput Syst 108:803–815CrossRef
go back to reference Mishra S, Soni D (2022) Implementation of ‘smishing detector’: an efficient model for smishing detection using neural network. SN Comput Sci 3(3):189CrossRef Mishra S, Soni D (2022) Implementation of ‘smishing detector’: an efficient model for smishing detection using neural network. SN Comput Sci 3(3):189CrossRef
go back to reference Poomka P, Pongsena W, Kerdprasop N, Kerdprasop K (2019) SMS spam detection based on long short-term memory and gated recurrent unit. Int J Future Comput Commun 8(1):11–15CrossRef Poomka P, Pongsena W, Kerdprasop N, Kerdprasop K (2019) SMS spam detection based on long short-term memory and gated recurrent unit. Int J Future Comput Commun 8(1):11–15CrossRef
go back to reference Ring M, Schlör D, Wunderlich S, Landes D, Hotho A (2021) Malware detection on windows audit logs using LSTMs. Comput Sec 109:102389CrossRef Ring M, Schlör D, Wunderlich S, Landes D, Hotho A (2021) Malware detection on windows audit logs using LSTMs. Comput Sec 109:102389CrossRef
go back to reference Sharaff A, Kamal C, Porwal S, Bhatia S, Kaur K, Hassan MM (2021) Spam message detection using Danger theory and Krill herd optimization. Comput Netw 199:108453CrossRef Sharaff A, Kamal C, Porwal S, Bhatia S, Kaur K, Hassan MM (2021) Spam message detection using Danger theory and Krill herd optimization. Comput Netw 199:108453CrossRef
go back to reference Sharif O, Hoque MM, Kayes ASM, Nowrozy R, Sarker IH (2020) Detecting suspicious texts using machine learning techniques. Appl Sci 10(18):6527CrossRef Sharif O, Hoque MM, Kayes ASM, Nowrozy R, Sarker IH (2020) Detecting suspicious texts using machine learning techniques. Appl Sci 10(18):6527CrossRef
go back to reference Sharma VD, Yadav SK, Yadav SK, Singh KN, Sharma S (2021) WITHDRAWN: An effective approach to protect social media account from spam mail–A machine learning approach Sharma VD, Yadav SK, Yadav SK, Singh KN, Sharma S (2021) WITHDRAWN: An effective approach to protect social media account from spam mail–A machine learning approach
go back to reference Smadi S, Aslam N, Zhang L (2018) Detection of online phishing email using dynamic evolving neural network based on reinforcement learning. Decis Support Syst 107:88–102CrossRef Smadi S, Aslam N, Zhang L (2018) Detection of online phishing email using dynamic evolving neural network based on reinforcement learning. Decis Support Syst 107:88–102CrossRef
go back to reference Sonowal G (2020) Detecting phishing SMS based on multiple correlation algorithms. SN Comput Sci 1(6):361CrossRef Sonowal G (2020) Detecting phishing SMS based on multiple correlation algorithms. SN Comput Sci 1(6):361CrossRef
go back to reference Suleiman D, Al-Naymat G (2017) SMS spam detection using H2O framework. Procedia Comput Sci 113:154–161CrossRef Suleiman D, Al-Naymat G (2017) SMS spam detection using H2O framework. Procedia Comput Sci 113:154–161CrossRef
go back to reference Sung CS, Kim CH, Park JY (2017) Development of humming call system for blocking spam on a smartphone. Multimed Tools Appl 76:17371–17383CrossRef Sung CS, Kim CH, Park JY (2017) Development of humming call system for blocking spam on a smartphone. Multimed Tools Appl 76:17371–17383CrossRef
go back to reference Ubaid F, Amin R, Ubaid FB, Iqbal MM (2017) Mitigating address spoofing attacks in hybrid SDN. Int J Adv Comput Sci Appl 8(4) Ubaid F, Amin R, Ubaid FB, Iqbal MM (2017) Mitigating address spoofing attacks in hybrid SDN. Int J Adv Comput Sci Appl 8(4)
go back to reference Ulfath RE, Alqahtani H, Hammoudeh M, Sarker IH (2021) Hybrid CNN-GRU framework with integrated pre-trained language transformer for SMS phishing detection. In: The 5th International Conference on Future Networks and Distributed Systems (pp 244–251) Ulfath RE, Alqahtani H, Hammoudeh M, Sarker IH (2021) Hybrid CNN-GRU framework with integrated pre-trained language transformer for SMS phishing detection. In: The 5th International Conference on Future Networks and Distributed Systems (pp 244–251)
go back to reference Ustun TS, Hussain SS, Ulutas A, Onen A, Roomi MM, Mashima D (2021) Machine learning-based intrusion detection for achieving cybersecurity in smart grids using IEC 61850 GOOSE messages. Symmetry 13(5):826CrossRef Ustun TS, Hussain SS, Ulutas A, Onen A, Roomi MM, Mashima D (2021) Machine learning-based intrusion detection for achieving cybersecurity in smart grids using IEC 61850 GOOSE messages. Symmetry 13(5):826CrossRef
go back to reference Ustundag Soykan E, Bagriyanik M (2020) The effect of SMiShing attack on security of demand response programs. Energies 13(17):4542CrossRef Ustundag Soykan E, Bagriyanik M (2020) The effect of SMiShing attack on security of demand response programs. Energies 13(17):4542CrossRef
go back to reference Vinod P, Zemmari A, Conti M (2019) A machine learning based approach to detect malicious android apps using discriminant system calls. Future Gener Comput Syst 94:333–350CrossRef Vinod P, Zemmari A, Conti M (2019) A machine learning based approach to detect malicious android apps using discriminant system calls. Future Gener Comput Syst 94:333–350CrossRef
go back to reference Wang CY, You CY, Hsu FH, Lee CH, Liu CH, Zhuang Y (2021) SMS Observer: a dynamic mechanism to analyze the behavior of SMS-based malware. J Parallel Distrib Comput 156:25–37CrossRef Wang CY, You CY, Hsu FH, Lee CH, Liu CH, Zhuang Y (2021) SMS Observer: a dynamic mechanism to analyze the behavior of SMS-based malware. J Parallel Distrib Comput 156:25–37CrossRef
go back to reference Wu L, Du X, Wu J (2014) MobiFish: A lightweight anti-phishing scheme for mobile phones. In: 2014 23rd international conference on computer communication and networks (icccn) (pp 1-8). IEEE Wu L, Du X, Wu J (2014) MobiFish: A lightweight anti-phishing scheme for mobile phones. In: 2014 23rd international conference on computer communication and networks (icccn) (pp 1-8). IEEE
go back to reference Xia T, Chen X (2020) A discrete hidden Markov model for SMS spam detection. Appl Sci 10(14):5011CrossRef Xia T, Chen X (2020) A discrete hidden Markov model for SMS spam detection. Appl Sci 10(14):5011CrossRef
go back to reference Xia T, Chen X (2021) A weighted feature enhanced Hidden Markov model for spam SMS filtering. Neurocomputing 444:48–58CrossRef Xia T, Chen X (2021) A weighted feature enhanced Hidden Markov model for spam SMS filtering. Neurocomputing 444:48–58CrossRef
go back to reference Zahra SR, Chishti MA, Baba AI, Wu F (2022) Detecting Covid-19 chaos driven phishing/malicious URL attacks by a fuzzy logic and data mining based intelligence system. Egyptian Inf J 23(2):197–214CrossRef Zahra SR, Chishti MA, Baba AI, Wu F (2022) Detecting Covid-19 chaos driven phishing/malicious URL attacks by a fuzzy logic and data mining based intelligence system. Egyptian Inf J 23(2):197–214CrossRef
go back to reference Zekri M, El Kafhali S, Aboutabit N, Saadi Y (2017) DDoS attack detection using ML techniques in cloud computing environments. In: 2017 3rd international conference of cloud computing technologies and applications (CloudTech) (pp 1–7), IEEE Zekri M, El Kafhali S, Aboutabit N, Saadi Y (2017) DDoS attack detection using ML techniques in cloud computing environments. In: 2017 3rd international conference of cloud computing technologies and applications (CloudTech) (pp 1–7), IEEE
Metadata
Title
An investigation in detection and mitigation of smishing using machine learning techniques
Authors
Mohd Shoaib
Mohammad Sarosh Umar
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01142-4

Premium Partner