Skip to main content
Top

2024 | OriginalPaper | Chapter

An MQTT IoT Intrusion Detection System Using Deep-Learning

Authors : Greeshma Andrew, M. P. Deepika, Soumia Chandran

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays the devices connected to an Internet of Things (IoT) network is enormously increasing day by day. IoT devices widely using Message Queuing Telemetry Transport (MQTT) protocol for their communication. Because of the heterogeneous nature and lack of security in IoT devices manufacturing, security systems against MQTT traffic are essential. In this paper, we proposed a zero biased Convolutional Neural Network (CNN) for the detection of intrusion. By removing the bias term, it reduces the computational complexity and it would be beneficial to deployed as Intrusion Detection System (IDS) for resource constrained IoT devices. The performance of binary classification of the model is compared with other Deep Neural Network (DNN) with the help of two abstract level features such as bidirectional flow and unidirectional flow from a publicly available dataset MQTT-IoT-IDS2020. The proposed model achieves superior results to the other model with the F1 score of 0.99 for bidirectional and unidirectional flow.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Masri, E., Kalyanam, K.R., Batts, J., Kim, J., Singh, S., Vo, T., Yan, C.: Investigating messaging protocols for the Internet of Things (IoT). IEEE Access 8, 94880–94911 (2020)CrossRef Al-Masri, E., Kalyanam, K.R., Batts, J., Kim, J., Singh, S., Vo, T., Yan, C.: Investigating messaging protocols for the Internet of Things (IoT). IEEE Access 8, 94880–94911 (2020)CrossRef
2.
go back to reference Soni, D., Makwana, A.: A survey on mqtt: a protocol of Internet of Things (IoT). In: International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), vol. 20, pp. 173–177 (2017) Soni, D., Makwana, A.: A survey on mqtt: a protocol of Internet of Things (IoT). In: International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), vol. 20, pp. 173–177 (2017)
3.
go back to reference Deogirikar, J., Vidhate, A.: Security attacks in IoT: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 32–37. IEEE (2017) Deogirikar, J., Vidhate, A.: Security attacks in IoT: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 32–37. IEEE (2017)
4.
go back to reference Da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of Things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)CrossRef Da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of Things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)CrossRef
5.
go back to reference Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)CrossRef Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017)CrossRef
6.
go back to reference Liu, Y., Wang, J., Li, J., Song, H., Yang, T., Niu, S., Ming, Z.: Zero-bias deep learning for accurate identification of Internet-of-Things (IoT) devices. IEEE Internet Things J. 8(4), 2627–2634 (2020)CrossRef Liu, Y., Wang, J., Li, J., Song, H., Yang, T., Niu, S., Ming, Z.: Zero-bias deep learning for accurate identification of Internet-of-Things (IoT) devices. IEEE Internet Things J. 8(4), 2627–2634 (2020)CrossRef
7.
go back to reference Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., Bellekens, X.: Machine learning based IoT intrusion detection system: an MQTT case study (MQTT-IoT-IDS2020 dataset). In: International Networking Conference, pp. 73–84. Springer (2020) Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., Bellekens, X.: Machine learning based IoT intrusion detection system: an MQTT case study (MQTT-IoT-IDS2020 dataset). In: International Networking Conference, pp. 73–84. Springer (2020)
8.
go back to reference Mosaiyebzadeh, F., Rodriguez, L.G.A., Batista, D.M., Hirata, R.: A network intrusion detection system using deep learning against MQTT attacks in IoT. In: 2021 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6. IEEE (2021) Mosaiyebzadeh, F., Rodriguez, L.G.A., Batista, D.M., Hirata, R.: A network intrusion detection system using deep learning against MQTT attacks in IoT. In: 2021 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6. IEEE (2021)
9.
go back to reference Boppana, T.K., Bagade, P.: GAN-AE: an unsupervised intrusion detection system for MQTT networks. Eng. Appl. Artif. Intell. 119, 105805 (2023) Boppana, T.K., Bagade, P.: GAN-AE: an unsupervised intrusion detection system for MQTT networks. Eng. Appl. Artif. Intell. 119, 105805 (2023)
10.
go back to reference Khan, M.A., Khan, M.A., Jan, S.U., Ahmad, J., Jamal, S.S., Shah, A.A. Pitropakis, N., Buchanan, W.J.: A deep learning-based intrusion detection system for mqtt enabled IoT. Sensors 21(21), 7016 (2021) Khan, M.A., Khan, M.A., Jan, S.U., Ahmad, J., Jamal, S.S., Shah, A.A. Pitropakis, N., Buchanan, W.J.: A deep learning-based intrusion detection system for mqtt enabled IoT. Sensors 21(21), 7016 (2021)
11.
go back to reference Zeghida, H., Boulaiche, M., Chikh, R.: Securing MQTT protocol for IoT environment using IDS based on ensemble learning. Int. J. Inform. Secur. 1–12 (2023) Zeghida, H., Boulaiche, M., Chikh, R.: Securing MQTT protocol for IoT environment using IDS based on ensemble learning. Int. J. Inform. Secur. 1–12 (2023)
12.
go back to reference Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRef Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRef
13.
go back to reference Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021) Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)
Metadata
Title
An MQTT IoT Intrusion Detection System Using Deep-Learning
Authors
Greeshma Andrew
M. P. Deepika
Soumia Chandran
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_12