Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-06-2020 | Foundations | Issue 15/2020

Soft Computing 15/2020

An n-state switching PSO algorithm for scalable optimization

Journal:
Soft Computing > Issue 15/2020
Authors:
Izaz Ur Rahman, Muhammad Zakarya, Mushtaq Raza, Rahim Khan
Important notes
Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Particle swarm optimization (PSO) is an optimization method that is most widely used to solve a number of problems in various fields such as engineering, economics and computer systems. However, due to its scalability and unsatisfying performance particularly for large-scale optimization problems; numerous PSO variants have been suggested so far, in the literature. This paper also proposes a new variant of the canonical PSO algorithm (‘N-state switching PSO—NS-SPSO’) that uses the evolutionary factor information to update particles velocities and, therefore, further enhance its performance. The evolutionary factor is derived by using the population distribution and the mean distance of each particle from the global best. The population distribution and the mean distance are determined through Euclidean distance. Moreover, algorithmic parameters such as inertia weight, and acceleration coefficients are assigned appropriate values at N stages (derived from exploration, exploitation, convergence and jumping out states) that improves the search efficiency and convergence speed. The proposed algorithm is applied to 12 widely used mathematical benchmark functions that demonstrate its best performance in terms of minimum evaluation error, fast convergence and low computational time. Besides these, seven high-dimensional functions and few other algorithms for large-scale optimization were considered to test the scalability of NS-SPSO algorithm. Our comparative results show that NS-SPSO performs well on low-dimensional problems and is promising for solving large-scale optimization problems. Furthermore, the proposed NS-PSO algorithm almost outperforms its closest rivals for various benchmarks.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 15/2020

Soft Computing 15/2020 Go to the issue

Premium Partner

    Image Credits