Skip to main content
Top

2018 | OriginalPaper | Chapter

An Open Robotics Environment Motivates Students to Learn the Key Concepts of Artificial Neural Networks and Reinforcement Learning

Authors : Tapani Toivonen, Ilkka Jormanainen, Markku Tukiainen

Published in: Robotics in Education

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Educational robotics is a widely recognized tool to motivate students and concretize abstract and complex topics, such as artificial intelligence in computing education curricula. Lego Mindstorms series is one of the most popular robotics platform due to its flexibility and relatively cheap price. We used Lego Mindstorms EV3 robots with a novel Open Learning Environment for Artificial Intelligence (OLE-AI) to teach concepts of reinforcement learning and artificial neural networks (ANNs) to computer science students. OLE-AI uses a white box approach to expose internal structures of an ANN to students. Results from the pilot study with OLE-AI indicate that the participating students were able to deepend their knowledge about AI topics through a practical and open exercise that involved them in controlling EV3 robots by manipulating the ANN and Q-Learning algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Altin, H., Pedaste, M.: Learning approaches to applying robotics in science education. J. Baltic Sci. Educ. 12(3), 365–377 (2013) Altin, H., Pedaste, M.: Learning approaches to applying robotics in science education. J. Baltic Sci. Educ. 12(3), 365–377 (2013)
3.
go back to reference Baird, L., et al.: Residual algorithms: reinforcement learning with function approximation. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 30–37 (1995) Baird, L., et al.: Residual algorithms: reinforcement learning with function approximation. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 30–37 (1995)
4.
go back to reference Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997)CrossRef Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997)CrossRef
5.
go back to reference Beynon, M.: Radical empiricism, empirical modelling and the nature of knowing. Pragmatics Cogn. 13(3), 615–646 (2005)CrossRef Beynon, M.: Radical empiricism, empirical modelling and the nature of knowing. Pragmatics Cogn. 13(3), 615–646 (2005)CrossRef
6.
go back to reference Beynon, M.: Computing applications from an empirical modeling perspective: progress, projects and prospects. In: 2016 8th International Conference on Knowledge and Smart Technology (KST), p. 318. IEEE (2016) Beynon, M.: Computing applications from an empirical modeling perspective: progress, projects and prospects. In: 2016 8th International Conference on Knowledge and Smart Technology (KST), p. 318. IEEE (2016)
7.
go back to reference Beynon, M., Roe, C.: Computer support for constructionism in context. In: Proceedings of the IEEE International Conference on Advanced Learning Technologies, pp. 216–220. IEEE (2004) Beynon, M., Roe, C.: Computer support for constructionism in context. In: Proceedings of the IEEE International Conference on Advanced Learning Technologies, pp. 216–220. IEEE (2004)
8.
go back to reference Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B., Rogers, C.B.: Lego-based robotics in higher education: 15 years of student creativity. Int. J. Adv. Robot. Syst. 11, 1–15 (2014)CrossRef Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B., Rogers, C.B.: Lego-based robotics in higher education: 15 years of student creativity. Int. J. Adv. Robot. Syst. 11, 1–15 (2014)CrossRef
9.
go back to reference Irgen-Gioro, J.J.Z.: Teaching artificial intelligence using lego. In: Proceedings of the International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS), p. 209. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016) Irgen-Gioro, J.J.Z.: Teaching artificial intelligence using lego. In: Proceedings of the International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS), p. 209. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016)
10.
go back to reference Jormanainen, I., Sutinen, E.: Using data mining to support teacher’s intervention in a robotics class. In: 2012 IEEE Fourth International Conference on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), pp. 39–46. IEEE (2012) Jormanainen, I., Sutinen, E.: Using data mining to support teacher’s intervention in a robotics class. In: 2012 IEEE Fourth International Conference on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), pp. 39–46. IEEE (2012)
11.
go back to reference Kim, S.H., Jeon, J.W.: Programming lego mindstorms nxt with visual programming. In: International Conference on Control, Automation and Systems, ICCAS 2007, pp. 2468–2472. IEEE (2007) Kim, S.H., Jeon, J.W.: Programming lego mindstorms nxt with visual programming. In: International Conference on Control, Automation and Systems, ICCAS 2007, pp. 2468–2472. IEEE (2007)
12.
go back to reference Klassner, F.: A case study of lego mindstorms’\(^{\rm TM}\) suitability for artificial intelligence and robotics courses at the college level. ACM SIGCSE Bull. 34, 8–12 (2002). ACMCrossRef Klassner, F.: A case study of lego mindstorms’\(^{\rm TM}\) suitability for artificial intelligence and robotics courses at the college level. ACM SIGCSE Bull. 34, 8–12 (2002). ACMCrossRef
13.
go back to reference Klassner, F., Anderson, S.D.: Lego mindstorms: not just for k-12 anymore. IEEE Robot. Autom. Mag. 10(2), 12–18 (2003)CrossRef Klassner, F., Anderson, S.D.: Lego mindstorms: not just for k-12 anymore. IEEE Robot. Autom. Mag. 10(2), 12–18 (2003)CrossRef
14.
go back to reference Michal, D.S., Etzkorn, L.: A comparison of player/stage/gazebo and microsoft robotics developer studio. In: Proceedings of the 49th Annual Southeast Regional Conference, pp. 60–66. ACM (2011) Michal, D.S., Etzkorn, L.: A comparison of player/stage/gazebo and microsoft robotics developer studio. In: Proceedings of the 49th Annual Southeast Regional Conference, pp. 60–66. ACM (2011)
15.
go back to reference Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, vol. 2, p. 3 (2010) Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, vol. 2, p. 3 (2010)
16.
go back to reference Parsons, S., Sklar, E.: Teaching ai using lego mindstorms. In: AAAI Spring Symposium (2004) Parsons, S., Sklar, E.: Teaching ai using lego mindstorms. In: AAAI Spring Symposium (2004)
17.
go back to reference Pedersen, R.U., Nørbjerg, J., Scholz, M.P.: Embedded programming education with lego mindstorms nxt using java (lejos), eclipse (xpairtise), and python (pymite). In: Proceedings of the 2009 Workshop on Embedded Systems Education, pp. 50–55. ACM (2009) Pedersen, R.U., Nørbjerg, J., Scholz, M.P.: Embedded programming education with lego mindstorms nxt using java (lejos), eclipse (xpairtise), and python (pymite). In: Proceedings of the 2009 Workshop on Embedded Systems Education, pp. 50–55. ACM (2009)
18.
go back to reference Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics. In: Proceedings of the Third IEEE-RAS International Conference on Humanoid Robots, pp. 1–20 (2003) Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics. In: Proceedings of the Third IEEE-RAS International Conference on Humanoid Robots, pp. 1–20 (2003)
19.
go back to reference Rungrattanaubol, J., Na-udom, A., Harfield, A.: An exploratory neural network model for predicting disability severity from road traffic accidents in Thailand. In: Proceedings of the Third International Conference on Knowledge and Smart Technologies, vol. 2011, p. 23 (2011) Rungrattanaubol, J., Na-udom, A., Harfield, A.: An exploratory neural network model for predicting disability severity from road traffic accidents in Thailand. In: Proceedings of the Third International Conference on Knowledge and Smart Technologies, vol. 2011, p. 23 (2011)
20.
go back to reference Toivonen, T.: Using js-eden to introduce the concepts of reinforcement learning and artificial neural networks. In: Proceedings of the 16th Koli Calling International Conference on Computing Education Research, pp. 165–169. ACM (2016) Toivonen, T.: Using js-eden to introduce the concepts of reinforcement learning and artificial neural networks. In: Proceedings of the 16th Koli Calling International Conference on Computing Education Research, pp. 165–169. ACM (2016)
21.
go back to reference Vamplew, P.: Lego mindstorms robots as a platform for teaching reinforcement learning (2004) Vamplew, P.: Lego mindstorms robots as a platform for teaching reinforcement learning (2004)
22.
go back to reference Van Der Vlist, B., Van De Westelaken, R., Bartneck, C., Hu, J., Ahn, R., Barakova, E., Delbressine, F., Feijs, L.: Teaching machine learning to design students. In: International Conference on Technologies for E-Learning and Digital Entertainment, pp. 206–217. Springer, Heidelberg (2008) Van Der Vlist, B., Van De Westelaken, R., Bartneck, C., Hu, J., Ahn, R., Barakova, E., Delbressine, F., Feijs, L.: Teaching machine learning to design students. In: International Conference on Technologies for E-Learning and Digital Entertainment, pp. 206–217. Springer, Heidelberg (2008)
23.
go back to reference Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)MATH Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)MATH
24.
go back to reference Weinberg, J.B., Yu, X.: Robotics in education: low-cost platforms for teaching integrated systems. IEEE Robot. Autom. Mag. 10(2), 4–6 (2003)CrossRef Weinberg, J.B., Yu, X.: Robotics in education: low-cost platforms for teaching integrated systems. IEEE Robot. Autom. Mag. 10(2), 4–6 (2003)CrossRef
25.
go back to reference Xu, K., Wu, F., Zhao, J.: Simplified online q-learning for lego ev3 robot. In: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 77–80. IEEE (2015) Xu, K., Wu, F., Zhao, J.: Simplified online q-learning for lego ev3 robot. In: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 77–80. IEEE (2015)
Metadata
Title
An Open Robotics Environment Motivates Students to Learn the Key Concepts of Artificial Neural Networks and Reinforcement Learning
Authors
Tapani Toivonen
Ilkka Jormanainen
Markku Tukiainen
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-62875-2_29

Premium Partner