Skip to main content
Top
Published in: Wireless Networks 6/2020

19-04-2020

An optimal energy resource allocation framework for cellular networks with power grid interruptions

Authors: Maria O. Hanna, Mostafa F. Shaaban, Mahmoud H. Ismail, Mohamed S. Hassan

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we investigate the problem of optimal allocation of renewable energy resources to power base stations (BSs) in cellular networks while accounting for possible power failures in the utility grid. The allocation problem under investigation is formulated as a mixed integer non-linear programming, which is then decomposed, due to its complexity, and solved as two interdependent problems with the help of deterministic and metaheuristic techniques. We propose an allocation algorithm that jointly aims at optimizing the allocation of individualized green energy resources to simultaneously power the BSs with the grid as well as minimizing the overall system costs. Cost minimization is achieved by selecting the optimal types and sizes of the used photovoltaic (PV) panels and batteries in addition to optimally scheduling the charging and discharging of the selected batteries. This is done while limiting PV curtailment and any expected loss of cellular services at the times of power outage. Finally, the effectiveness of the proposed algorithm is demonstrated through the simulation of a sample case of a typical BS where Markov Chain Monte Carlo simulations are carried out to account for the uncertainty of the output of the PV panels and the grid failures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future network and mobile summit, Florence, Italy, June 2010, pp. 1–8. Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future network and mobile summit, Florence, Italy, June 2010, pp. 1–8.
2.
go back to reference Hassan, H. A., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE Online Conference on Green Communications, Piscataway, NJ, October 2013, pp. 1–7. Hassan, H. A., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE Online Conference on Green Communications, Piscataway, NJ, October 2013, pp. 1–7.
3.
go back to reference Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey some research issues and challenges. IEEE Communications Surveys & Tutorials,13(4), 524–540. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey some research issues and challenges. IEEE Communications Surveys & Tutorials,13(4), 524–540.
4.
go back to reference Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications,18(5), 40–49. Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications,18(5), 40–49.
6.
go back to reference Deruyck, M., Renga, D., Meo, M., & Martens, L. (2018). Accounting for the varying supply of solar energy when designing wireless access networks. IEEE Transactions on Green Communications and Networking,2(1), 275–290. Deruyck, M., Renga, D., Meo, M., & Martens, L. (2018). Accounting for the varying supply of solar energy when designing wireless access networks. IEEE Transactions on Green Communications and Networking,2(1), 275–290.
7.
go back to reference Renga, D., Hassan, H., Meo, M., & Nuaymi, L. (2018). Energy management and Base Station on/off switching in green mobile networks for offering ancillary services. IEEE Transactions on Green Communications and Networking,2(3), 868–880. Renga, D., Hassan, H., Meo, M., & Nuaymi, L. (2018). Energy management and Base Station on/off switching in green mobile networks for offering ancillary services. IEEE Transactions on Green Communications and Networking,2(3), 868–880.
8.
go back to reference Mowla, M., Ahmad, I., Habibi, D., & Phung, Q. (2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking,1(3), 264–280. Mowla, M., Ahmad, I., Habibi, D., & Phung, Q. (2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking,1(3), 264–280.
9.
go back to reference Labidi, W., Chahed, T., & Elayoubi, S. (2018). Optimal battery management strategies in mobile networks powered by a smart grid. IEEE Transactions on Green Communications and Networking,2(3), 859–867. Labidi, W., Chahed, T., & Elayoubi, S. (2018). Optimal battery management strategies in mobile networks powered by a smart grid. IEEE Transactions on Green Communications and Networking,2(3), 859–867.
10.
go back to reference Li, Y., Zhang, H., Wang, J., Cao, B., Liu, Q., & Daneshmand, M. (2019). Energy-Efficient deployment and adaptive sleeping in heterogeneous cellular networks. IEEE Access,7, 35838–35850. Li, Y., Zhang, H., Wang, J., Cao, B., Liu, Q., & Daneshmand, M. (2019). Energy-Efficient deployment and adaptive sleeping in heterogeneous cellular networks. IEEE Access,7, 35838–35850.
11.
go back to reference Li, Y., Celebi, H., Daneshmand, M., Wang, C., & Zhao, W. (2013). Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications,20(6), 99–105. Li, Y., Celebi, H., Daneshmand, M., Wang, C., & Zhao, W. (2013). Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications,20(6), 99–105.
12.
go back to reference Li, Y., Zhu, X., Liao, C., Wang, C., & Cao, B. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology,64(6), 2551–2560. Li, Y., Zhu, X., Liao, C., Wang, C., & Cao, B. (2015). Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks. IEEE Transactions on Vehicular Technology,64(6), 2551–2560.
13.
go back to reference Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications,14(8), 4093–4104. Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications,14(8), 4093–4104.
14.
go back to reference Marsan, M. A., Bucalo, G., Di Caro, A., Meo, M., & Zhang, Y. (2013). Towards zero grid electricity networking: Powering BSs with renewable energy sources. In Proceedings of IEEE International Conference on Communications (ICC) Workshops (ICC), Budapest, Hungary, October 2013, pp. 596–601. Marsan, M. A., Bucalo, G., Di Caro, A., Meo, M., & Zhang, Y. (2013). Towards zero grid electricity networking: Powering BSs with renewable energy sources. In Proceedings of IEEE International Conference on Communications (ICC) Workshops (ICC), Budapest, Hungary, October 2013, pp. 596–601.
15.
go back to reference Zheng, M., Pawelczak, P., Stanczak, S., & Yu, H. (2013). Planning of cellular networks enhanced by energy harvesting. IEEE Communications Letters,17(6), 1092–1095. Zheng, M., Pawelczak, P., Stanczak, S., & Yu, H. (2013). Planning of cellular networks enhanced by energy harvesting. IEEE Communications Letters,17(6), 1092–1095.
16.
go back to reference Kaur, R., Krishnasamy, V., & Kandasamy, N. K. (2018). Optimal sizing of wind—PV-based DC microgrid for telecom power supply in remote areas. IET Renewable Power Generation,12(7), 859–866. Kaur, R., Krishnasamy, V., & Kandasamy, N. K. (2018). Optimal sizing of wind—PV-based DC microgrid for telecom power supply in remote areas. IET Renewable Power Generation,12(7), 859–866.
17.
go back to reference Goud, J. S., & Kalpana, R. (2017). Optimal sizing of hybrid power supply system for telecommunication BTS load to ensure reliable power at lower cost. In 2017 international conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, 2017, pp. 1–6. Goud, J. S., & Kalpana, R. (2017). Optimal sizing of hybrid power supply system for telecommunication BTS load to ensure reliable power at lower cost. In 2017 international conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, 2017, pp. 1–6.
18.
go back to reference Renga, D., & Meo, M. (2019). Dimensioning renewable energy systems to power mobile networks. IEEE Transactions on Green Communications and Networking,3(2), 366–380. Renga, D., & Meo, M. (2019). Dimensioning renewable energy systems to power mobile networks. IEEE Transactions on Green Communications and Networking,3(2), 366–380.
19.
go back to reference Xu, F., Li, Y., Wang, H., Zhang, P., & Jin, D. (2017). Understanding mobile traffic patterns of large scale cellular towers in urban environment. IEEE/ACM Transactions on Networking,25(2), 1147–1161. Xu, F., Li, Y., Wang, H., Zhang, P., & Jin, D. (2017). Understanding mobile traffic patterns of large scale cellular towers in urban environment. IEEE/ACM Transactions on Networking,25(2), 1147–1161.
20.
go back to reference Peng, C., Lee, S., Lu, S., Luo, H., & Li, H. (2011). Traffic-driven power saving in operational 3G cellular networks. In Proceedings of 17th annual international conference on Mobile computing and networking (MobiCom’11), Nevada, USA, September 2011, pp. 121–132. Peng, C., Lee, S., Lu, S., Luo, H., & Li, H. (2011). Traffic-driven power saving in operational 3G cellular networks. In Proceedings of 17th annual international conference on Mobile computing and networking (MobiCom’11), Nevada, USA, September 2011, pp. 121–132.
21.
go back to reference Marsan, M., Chiaraviglio, L., Ciullo, D., & Meo, M. (2012). Multiple daily base station switch-offs in cellular networks. In Proceedings of 2012 fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, August 2012, , pp. 245–250. Marsan, M., Chiaraviglio, L., Ciullo, D., & Meo, M. (2012). Multiple daily base station switch-offs in cellular networks. In Proceedings of 2012 fourth International Conference on Communications and Electronics (ICCE), Hue, Vietnam, August 2012, , pp. 245–250.
22.
go back to reference Lorincz, J., Garma, T., & Petrovic, G. (2012). Measurements and modelling of base station power consumption under real traffic loads. Sensors,12(4), 4281–4310. Lorincz, J., Garma, T., & Petrovic, G. (2012). Measurements and modelling of base station power consumption under real traffic loads. Sensors,12(4), 4281–4310.
23.
go back to reference Bao, L., Wang, J., & Kang, L. (2012). The applied effect analysis of heat exchanger installed in a typical communication base station in Beijing of China. Energy Procedia,14, 620–625. Bao, L., Wang, J., & Kang, L. (2012). The applied effect analysis of heat exchanger installed in a typical communication base station in Beijing of China. Energy Procedia,14, 620–625.
24.
go back to reference Zheng, K., Liu, J., Xin, S., & Zhang, J. (2015). Simulation of wind power time series based on the MCMC method. In IEEE 5th international conference on electric utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, November 2015. Zheng, K., Liu, J., Xin, S., & Zhang, J. (2015). Simulation of wind power time series based on the MCMC method. In IEEE 5th international conference on electric utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, November 2015.
25.
go back to reference Kandil, S., Farag, H., Shaaban, M., & El-Sharafy, M. (2018). A combined resource allocation framework for PEVs charging stations, renewable energy resources and distributed energy storage systems. Energy,143, 961–972. Kandil, S., Farag, H., Shaaban, M., & El-Sharafy, M. (2018). A combined resource allocation framework for PEVs charging stations, renewable energy resources and distributed energy storage systems. Energy,143, 961–972.
26.
go back to reference Masters, G. (2013). Renewable and efficient electric power systems (2nd ed.). Hoboken: Wiley. Masters, G. (2013). Renewable and efficient electric power systems (2nd ed.). Hoboken: Wiley.
27.
go back to reference Balducci, P. J., Roop, J. M., Schienbein, L. A., DeSteese, J. G., & Weimar, M. R. (2002). Electric power interruption cost estimates for individual industries, sectors, and US Economy. No. PNNL-13797. Pacific Northwest National Laboratory (PNNL), Richland, WA, 2002. Balducci, P. J., Roop, J. M., Schienbein, L. A., DeSteese, J. G., & Weimar, M. R. (2002). Electric power interruption cost estimates for individual industries, sectors, and US Economy. No. PNNL-13797. Pacific Northwest National Laboratory (PNNL), Richland, WA, 2002.
28.
go back to reference Golden, R., & Paulos, B. (2015). Curtailment of renewable energy in California and beyond. The Electricity Journal,28(6), 36–50. Golden, R., & Paulos, B. (2015). Curtailment of renewable energy in California and beyond. The Electricity Journal,28(6), 36–50.
29.
go back to reference Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013). Mixed-integer nonlinear optimization. Acta Numerica,22, 1–131.MathSciNetMATH Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., & Mahajan, A. (2013). Mixed-integer nonlinear optimization. Acta Numerica,22, 1–131.MathSciNetMATH
30.
go back to reference Kannan, R., & Monma, C. (1978). On the computational complexity of integer programming problems. In R. Henn, B. Korte, & W. Oettli (Eds.), Optimization and operations research, Volume 157 of lecture notes in economics and mathematical systems (pp. 161–172). Berlin: Springer. Kannan, R., & Monma, C. (1978). On the computational complexity of integer programming problems. In R. Henn, B. Korte, & W. Oettli (Eds.), Optimization and operations research, Volume 157 of lecture notes in economics and mathematical systems (pp. 161–172). Berlin: Springer.
31.
go back to reference Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and comparison of metaheuristic techniques to generation expansion planning problem. IEEE Transactions on Power Systems,20(1), 466–475. Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and comparison of metaheuristic techniques to generation expansion planning problem. IEEE Transactions on Power Systems,20(1), 466–475.
32.
go back to reference Rosenthal, E. (2008). GAMS—A user’s guide. GAMS Development Corporation. Rosenthal, E. (2008). GAMS—A user’s guide. GAMS Development Corporation.
34.
go back to reference Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2010). Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems,25(1), 360–370. Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2010). Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems,25(1), 360–370.
Metadata
Title
An optimal energy resource allocation framework for cellular networks with power grid interruptions
Authors
Maria O. Hanna
Mostafa F. Shaaban
Mahmoud H. Ismail
Mohamed S. Hassan
Publication date
19-04-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02333-z

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue