Skip to main content
Top

2023 | OriginalPaper | Chapter

12. An Optimal Sensor Network Design Framework for Structural Health Monitoring Using Value of Information

Authors : Mayank Chadha, Zhen Hu, Charles R. Farrar, Michael D. Todd

Published in: Model Validation and Uncertainty Quantification, Volume 3

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A structural health monitoring (SHM) system is essentially an information-gathering mechanism. The information accumulated via an SHM system is crucial in making appropriate maintenance decisions over the life cycle of the structure. An SHM system is feasible if it leads to a greater expected reward (by making data and risk-informed decisions) than the intrinsic cost (or investment risk) of the information-acquiring mechanism incurred over the lifespan of the structure. In short, the value of information acquired through a feasible SHM system manifest into net positive expected cost savings over the life cycle of the structure. Traditionally, the cost-benefit analysis of an SHM system is carried out through pre-posterior decision analysis that helps one evaluate the benefit of an information-gathering mechanism using the expected value of information (EVoI) metric. EVoI is a differential measure and can be mathematically expressed as a difference between the expected reward and investment risk. Therefore, by definition, EVoI fails to capture the compounded savings over the life cycle of the structure (since it quantifies absolute savings). Unlike EVoI, we quantify the economic advantage of installing an SHM system for inference of the structural state by using a normalized expected-reward (benefit of using an SHM system) to investment-risk (cost of SHM over the life cycle) ratio metric (also called a risk-adjusted reward in short) as the objective function to quantify the value of information (VOI). We consider monitoring of a miter gate as the demonstration example and focus on the inference of an unknown and uncertain state parameter(s) (i.e., damage from loss of contact between gate and wall, the “gap”) from the acquired sensor data. This paper proposes a sensor optimization framework that maximizes the net expected compounded savings achieved as a result of making SHM system-acquired data-informed life cycle management decisions. We also inspect the impact of various risk intensities of decision-makers on the optimal sensor design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chadha, M., Ramancha, M.K., Vega, M.A., Conte, J.P., Todd, M.D.: The role of risk profile in state determination of structures. In: Proceedings 10th International Conference on Structural Health Monitoring (SHMII-10 Conference), Porto, Portugal, June 30–July 2 (2021) Chadha, M., Ramancha, M.K., Vega, M.A., Conte, J.P., Todd, M.D.: The role of risk profile in state determination of structures. In: Proceedings 10th International Conference on Structural Health Monitoring (SHMII-10 Conference), Porto, Portugal, June 30–July 2 (2021)
2.
go back to reference Chadha, M., Hu, Z., Todd, M.D.: An alternative quantification of the value of information in structural health monitoring. In: Structural Health Monitoring: Value of Information Perspective. Sage (2021) Chadha, M., Hu, Z., Todd, M.D.: An alternative quantification of the value of information in structural health monitoring. In: Structural Health Monitoring: Value of Information Perspective. Sage (2021)
3.
go back to reference Yang, Y., Chadha, M., Hu, Z., Parno, M., Todd, M.D.: A probabilistic sensor design approach for structural health monitoring using risk-weighted f-divergence. Mech. Syst. Signal Process. 161, 107920 (2021)CrossRef Yang, Y., Chadha, M., Hu, Z., Parno, M., Todd, M.D.: A probabilistic sensor design approach for structural health monitoring using risk-weighted f-divergence. Mech. Syst. Signal Process. 161, 107920 (2021)CrossRef
Metadata
Title
An Optimal Sensor Network Design Framework for Structural Health Monitoring Using Value of Information
Authors
Mayank Chadha
Zhen Hu
Charles R. Farrar
Michael D. Todd
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-04090-0_12