Skip to main content
Top
Published in: Neural Processing Letters 5/2021

07-06-2021

An Optimization Technique for Solving a Class of Ridge Fuzzy Regression Problems

Authors: Delara Karbasi, Alireza Nazemi, Mohammad Reza Rabiei

Published in: Neural Processing Letters | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a hybrid scheme based on recurrent neural networks for approximate coefficients (parameters) of ridge fuzzy regression model with LR-fuzzy output and crisp inputs is presented. Here a neural network is first constructed based on some concepts of convex optimization and stability theory. The suggested neural network model guarantees to find the approximate parameters of the ridge fuzzy regression problem. The existence and convergence of the trajectories of the neural network are studied. The Lyapunov stability for the neural network is also shown. To assess the ridge fuzzy regression estimator, the mean squared prediction error with three different well known distances are used. In order to depict the performance of the proposed ridge technique in the presence of multicollinear data, a Monte Carlo simulation is presented. To further determine, an example of a situation in which one variable is a perfect linear combination of the other variable is used to test the applicability of the proposed method. In this study, the performance of the model is evaluated by error parameters and visualized in the Taylor diagram. The predictive ability of the model thus obtained is examined by cross- validation to investigate how well the model fits and predicts every observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khashei M, Hejazi SR, Bijari M (2008) A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy Sets Syst 159(7):769–786MathSciNetMATHCrossRef Khashei M, Hejazi SR, Bijari M (2008) A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy Sets Syst 159(7):769–786MathSciNetMATHCrossRef
2.
go back to reference Chaudhuri A, De K (2009) Time series forecasting using hybrid neuro-fuzzy regression model. In: International workshop on rough sets, fuzzy sets, data mining, and granular-soft computing, pp 369–381, Springer Chaudhuri A, De K (2009) Time series forecasting using hybrid neuro-fuzzy regression model. In: International workshop on rough sets, fuzzy sets, data mining, and granular-soft computing, pp 369–381, Springer
3.
go back to reference Azadeh A, Saberi M, Seraj O (2010) An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of iran. Energy 35(6):2351–2366CrossRef Azadeh A, Saberi M, Seraj O (2010) An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of iran. Energy 35(6):2351–2366CrossRef
4.
go back to reference Azadeh A, Saberi M, Gitiforouz A (2011) An integrated simulation-based fuzzy regression-time series algorithm for electricity consumption estimation with non-stationary data. J Chin Inst Eng 34(8):1047–1066CrossRef Azadeh A, Saberi M, Gitiforouz A (2011) An integrated simulation-based fuzzy regression-time series algorithm for electricity consumption estimation with non-stationary data. J Chin Inst Eng 34(8):1047–1066CrossRef
5.
go back to reference Ciavolino E, Calcagnì A (2016) A generalized maximum entropy (GME) estimation approach to fuzzy regression model. Appl Soft Comput 38:51–63CrossRef Ciavolino E, Calcagnì A (2016) A generalized maximum entropy (GME) estimation approach to fuzzy regression model. Appl Soft Comput 38:51–63CrossRef
6.
go back to reference Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J (2017) Granular fuzzy regression domain adaptation in takagi-sugeno fuzzy models. IEEE Trans Fuzzy Syst 26(2):847–858CrossRef Zuo H, Zhang G, Pedrycz W, Behbood V, Lu J (2017) Granular fuzzy regression domain adaptation in takagi-sugeno fuzzy models. IEEE Trans Fuzzy Syst 26(2):847–858CrossRef
7.
go back to reference Ferraro MB (2017) On the generalization performance of a regression model with imprecise elements. Int J Uncertain Fuzziness Knowl Based Syst 25(05):723–740MathSciNetMATHCrossRef Ferraro MB (2017) On the generalization performance of a regression model with imprecise elements. Int J Uncertain Fuzziness Knowl Based Syst 25(05):723–740MathSciNetMATHCrossRef
8.
go back to reference Asai H, Tanaka S, Uegima K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern 12(6):903–907MATHCrossRef Asai H, Tanaka S, Uegima K (1982) Linear regression analysis with fuzzy model. IEEE Trans Syst Man Cybern 12(6):903–907MATHCrossRef
9.
go back to reference Gong Y, Yang S, Ma H, Ge M (2018) Fuzzy regression model based on incentre distance and application to employee performance evaluation. Int J Fuzzy Syst 20(8):2632–2639CrossRef Gong Y, Yang S, Ma H, Ge M (2018) Fuzzy regression model based on incentre distance and application to employee performance evaluation. Int J Fuzzy Syst 20(8):2632–2639CrossRef
10.
go back to reference Rabiei MR, Arashi M, Farrokhi M (2019) Fuzzy ridge regression with fuzzy input and output. Soft Comput 23(23):12189–12198MATHCrossRef Rabiei MR, Arashi M, Farrokhi M (2019) Fuzzy ridge regression with fuzzy input and output. Soft Comput 23(23):12189–12198MATHCrossRef
12.
go back to reference Wang T, Shi P, Wang G (2020) Solving fuzzy regression equation and its approximation for random fuzzy variable and their application. Soft Comput 24(2):919–933MathSciNetMATHCrossRef Wang T, Shi P, Wang G (2020) Solving fuzzy regression equation and its approximation for random fuzzy variable and their application. Soft Comput 24(2):919–933MathSciNetMATHCrossRef
13.
go back to reference Chen LH, Nien SH (2020) Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations. Fuzzy Optim Decis Making 19:1–20MathSciNetMATHCrossRef Chen LH, Nien SH (2020) Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations. Fuzzy Optim Decis Making 19:1–20MathSciNetMATHCrossRef
14.
go back to reference Arefi M (2020) Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters. Soft Comput 24(1):311–320MATHCrossRef Arefi M (2020) Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters. Soft Comput 24(1):311–320MATHCrossRef
15.
go back to reference Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1):55–67MATHCrossRef Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1):55–67MATHCrossRef
16.
go back to reference Lawson CL, Hanson R (1974) Solving least squares problems. Society for Industrial and Applied Mathematics, philadelphia Lawson CL, Hanson R (1974) Solving least squares problems. Society for Industrial and Applied Mathematics, philadelphia
17.
go back to reference Frank LE, Friedman JH (1993) A statistical view of some chemometrics regression tools. Technometrics 35(2):109–135MATHCrossRef Frank LE, Friedman JH (1993) A statistical view of some chemometrics regression tools. Technometrics 35(2):109–135MATHCrossRef
18.
go back to reference Melo SP, Kibria B (2020) On some test statistics for testing the regression coefficients in presence of multicollinearity: a simulation study. Stats 3(1):40–55CrossRef Melo SP, Kibria B (2020) On some test statistics for testing the regression coefficients in presence of multicollinearity: a simulation study. Stats 3(1):40–55CrossRef
19.
go back to reference Lukman AF, Adewuyi E, Månsson K, Kibria BG (2021) A new estimator for the multicollinear poisson regression model: simulation and application. Sci Rep 11(1):1–11CrossRef Lukman AF, Adewuyi E, Månsson K, Kibria BG (2021) A new estimator for the multicollinear poisson regression model: simulation and application. Sci Rep 11(1):1–11CrossRef
20.
go back to reference Månsson K, Shukur G, Sjölander P (2014) A new asymmetric interaction ridge (air) regression method. Commun Stat Theory Methods 43(3):616–643MathSciNetMATHCrossRef Månsson K, Shukur G, Sjölander P (2014) A new asymmetric interaction ridge (air) regression method. Commun Stat Theory Methods 43(3):616–643MathSciNetMATHCrossRef
21.
22.
go back to reference Zhang T, Deng Z, Choi KS, Liu J, Wang S (2017) Robust extreme learning fuzzy systems using ridge regression for small and noisy datasets. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–7, IEEE Zhang T, Deng Z, Choi KS, Liu J, Wang S (2017) Robust extreme learning fuzzy systems using ridge regression for small and noisy datasets. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–7, IEEE
23.
go back to reference Firinguetti L, Kibria G, Araya R (2017) Study of partial least squares and ridge regression methods. Commun Stat Simul Comput 46(8):6631–6644MathSciNetMATHCrossRef Firinguetti L, Kibria G, Araya R (2017) Study of partial least squares and ridge regression methods. Commun Stat Simul Comput 46(8):6631–6644MathSciNetMATHCrossRef
24.
go back to reference Arashi M, Kibria BG, Valizadeh T (2017) On ridge parameter estimators under stochastic subspace hypothesis. J Stat Comput Simul 87(5):966–983MathSciNetMATHCrossRef Arashi M, Kibria BG, Valizadeh T (2017) On ridge parameter estimators under stochastic subspace hypothesis. J Stat Comput Simul 87(5):966–983MathSciNetMATHCrossRef
25.
go back to reference Saleh AME, Kibria BG, Geroge F (2019) Comparative study of lasso, ridge regression, preliminary test and stein-type estimators for the sparse gaussian regression model. Stat Optim Inform Comput 7(4):626–641MathSciNet Saleh AME, Kibria BG, Geroge F (2019) Comparative study of lasso, ridge regression, preliminary test and stein-type estimators for the sparse gaussian regression model. Stat Optim Inform Comput 7(4):626–641MathSciNet
26.
go back to reference Lukman AF, Ayinde K, Kibria BG, Adewuyi ET (2020) Modified ridge-type estimator for the gamma regression model. Commun Stat Simul Comput, pp. 1–15 Lukman AF, Ayinde K, Kibria BG, Adewuyi ET (2020) Modified ridge-type estimator for the gamma regression model. Commun Stat Simul Comput, pp. 1–15
27.
go back to reference Suhail M, Chand S, Kibria BG (2020) Quantile based estimation of biasing parameters in ridge regression model. Commun Stat Simul Comput 49(10):2732–2744MathSciNetCrossRef Suhail M, Chand S, Kibria BG (2020) Quantile based estimation of biasing parameters in ridge regression model. Commun Stat Simul Comput 49(10):2732–2744MathSciNetCrossRef
28.
go back to reference Lukman AF, Ayinde K, Kibria G, Jegede SL (2020) Two-parameter modified ridge-type m-estimator for linear regression model. Sci World J 2020:1–24 Lukman AF, Ayinde K, Kibria G, Jegede SL (2020) Two-parameter modified ridge-type m-estimator for linear regression model. Sci World J 2020:1–24
29.
go back to reference Kibria B, Lukman AF (2020) A new ridge-type estimator for the linear regression model: Simulations and applications. Scientifica 2020:1–15 Kibria B, Lukman AF (2020) A new ridge-type estimator for the linear regression model: Simulations and applications. Scientifica 2020:1–15
30.
go back to reference Qasim M, Månsson K, Golam Kibria B (2021) On some beta ridge regression estimators: method, simulation and application. J Stat Comput Simul, 91:1699–1712 Qasim M, Månsson K, Golam Kibria B (2021) On some beta ridge regression estimators: method, simulation and application. J Stat Comput Simul, 91:1699–1712
31.
go back to reference Nazemi A (2013) Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng Appl Artif Intell 26(2):685–696CrossRef Nazemi A (2013) Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng Appl Artif Intell 26(2):685–696CrossRef
32.
go back to reference Chen JS, Ko CH, Pan S (2010) A neural network based on the generalized fischer-burmeister function for nonlinear complementarity problems. Inf Sci 180(5):697–711MathSciNetMATHCrossRef Chen JS, Ko CH, Pan S (2010) A neural network based on the generalized fischer-burmeister function for nonlinear complementarity problems. Inf Sci 180(5):697–711MathSciNetMATHCrossRef
33.
go back to reference Dang C, Leung Y, Gao XB, Chen KZ (2004) Neural networks for nonlinear and mixed complementarity problems and their applications. Neural Netw 17(2):271–283MATHCrossRef Dang C, Leung Y, Gao XB, Chen KZ (2004) Neural networks for nonlinear and mixed complementarity problems and their applications. Neural Netw 17(2):271–283MATHCrossRef
34.
go back to reference Effati S, Ghomashi A, Nazemi A (2007) Application of projection neural network in solving convex programming problems. Appl Math Comput 188(2):1103–1114MathSciNetMATH Effati S, Ghomashi A, Nazemi A (2007) Application of projection neural network in solving convex programming problems. Appl Math Comput 188(2):1103–1114MathSciNetMATH
35.
go back to reference Effati S, Nazemi A (2006) Neural network models and its application for solving linear and quadratic programming problems. Appl Math Comput 172(1):305–331MathSciNetMATH Effati S, Nazemi A (2006) Neural network models and its application for solving linear and quadratic programming problems. Appl Math Comput 172(1):305–331MathSciNetMATH
36.
go back to reference Han Q, Liao LZ, Qi H, Qi L (2001) Stability analysis of gradient-based neural networks for optimization problems. J Global Optim 19(4):363–381MathSciNetMATHCrossRef Han Q, Liao LZ, Qi H, Qi L (2001) Stability analysis of gradient-based neural networks for optimization problems. J Global Optim 19(4):363–381MathSciNetMATHCrossRef
37.
go back to reference Hu X, Wang J (2006) Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans Neural Netw 17(6):1487–1499CrossRef Hu X, Wang J (2006) Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans Neural Netw 17(6):1487–1499CrossRef
38.
go back to reference Hu X, Wang J (2007) “A recurrent neural network for solving a class of general variational inequalities” and Cybernetics. IEEE Transactions on Systems, Man, Part B (Cybernetics) 37(3):528–539 Hu X, Wang J (2007) “A recurrent neural network for solving a class of general variational inequalities” and Cybernetics. IEEE Transactions on Systems, Man, Part B (Cybernetics) 37(3):528–539
39.
40.
go back to reference Liao LZ, Qi H, Qi L (2001) Solving nonlinear complementarity problems with neural networks: a reformulation method approach. J Comput Appl Math 131(1–2):343–359MathSciNetMATHCrossRef Liao LZ, Qi H, Qi L (2001) Solving nonlinear complementarity problems with neural networks: a reformulation method approach. J Comput Appl Math 131(1–2):343–359MathSciNetMATHCrossRef
41.
go back to reference Nazemi A (2012) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17(4):1696–1705MathSciNetMATHCrossRef Nazemi A (2012) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17(4):1696–1705MathSciNetMATHCrossRef
42.
go back to reference Nazemi A, Effati S (2013) An application of a merit function for solving convex programming problems. Comput Ind Eng 66(2):212–221CrossRef Nazemi A, Effati S (2013) An application of a merit function for solving convex programming problems. Comput Ind Eng 66(2):212–221CrossRef
43.
go back to reference Nazemi A, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cogn Comput 6(3):484–495CrossRef Nazemi A, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cogn Comput 6(3):484–495CrossRef
44.
go back to reference Xia Y, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(4):447–458MathSciNetMATHCrossRef Xia Y, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(4):447–458MathSciNetMATHCrossRef
45.
go back to reference Xia Y, Wang J (2004) A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans Neural Netw 15(2):318–328CrossRef Xia Y, Wang J (2004) A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans Neural Netw 15(2):318–328CrossRef
46.
go back to reference Xia Y, Wang J (2005) A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans Neural Netw 16(2):379–386CrossRef Xia Y, Wang J (2005) A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans Neural Netw 16(2):379–386CrossRef
47.
go back to reference Yashtini M, Malek A (2007) Solving complementarity and variational inequalities problems using neural networks. Appl Math Comput 190(1):216–230MathSciNetMATH Yashtini M, Malek A (2007) Solving complementarity and variational inequalities problems using neural networks. Appl Math Comput 190(1):216–230MathSciNetMATH
48.
go back to reference Zak SH, Upatising V, Hui S (1995) Solving linear programming problems with neural networks: a comparative study. IEEE Trans Neural Netw 6(1):94–104CrossRef Zak SH, Upatising V, Hui S (1995) Solving linear programming problems with neural networks: a comparative study. IEEE Trans Neural Netw 6(1):94–104CrossRef
49.
go back to reference Chang PT (1997) Fuzzy seasonality forecasting. Fuzzy Sets Syst 90(1):1–10CrossRef Chang PT (1997) Fuzzy seasonality forecasting. Fuzzy Sets Syst 90(1):1–10CrossRef
51.
go back to reference Modarres M, Nasrabadi E, Nasrabadi MM (2005) Fuzzy linear regression models with least square errors. Appl Math Comput 163(2):977–989MathSciNetMATH Modarres M, Nasrabadi E, Nasrabadi MM (2005) Fuzzy linear regression models with least square errors. Appl Math Comput 163(2):977–989MathSciNetMATH
52.
go back to reference Abbasbandy S, Otadi M (2006) Numerical solution of fuzzy polynomials by fuzzy neural network. Appl Math Comput 181(2):1084–1089MathSciNetMATH Abbasbandy S, Otadi M (2006) Numerical solution of fuzzy polynomials by fuzzy neural network. Appl Math Comput 181(2):1084–1089MathSciNetMATH
53.
go back to reference Abbasbandy S, Otadi M, Mosleh M (2008) Numerical solution of a system of fuzzy polynomials by fuzzy neural network. Inf Sci 178(8):1948–1960MATHCrossRef Abbasbandy S, Otadi M, Mosleh M (2008) Numerical solution of a system of fuzzy polynomials by fuzzy neural network. Inf Sci 178(8):1948–1960MATHCrossRef
54.
go back to reference Nasrabadi E, Hashemi SM (2008) Robust fuzzy regression analysis using neural networks. Int J Uncertain Fuzziness Knowl Based Syst 16(04):579–598MATHCrossRef Nasrabadi E, Hashemi SM (2008) Robust fuzzy regression analysis using neural networks. Int J Uncertain Fuzziness Knowl Based Syst 16(04):579–598MATHCrossRef
55.
go back to reference Liu HT, Wang J, He YL, Ashfaq RAR (2017) Extreme learning machine with fuzzy input and fuzzy output for fuzzy regression. Neural Comput Appl 28(11):3465–3476CrossRef Liu HT, Wang J, He YL, Ashfaq RAR (2017) Extreme learning machine with fuzzy input and fuzzy output for fuzzy regression. Neural Comput Appl 28(11):3465–3476CrossRef
56.
go back to reference Yeylaghi S, Otadi M, Imankhan N (2017) A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management. Beni-Suef Univ J Basic Appl Sci 6(2):106–111 Yeylaghi S, Otadi M, Imankhan N (2017) A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management. Beni-Suef Univ J Basic Appl Sci 6(2):106–111
57.
go back to reference Chukhrova N, Johannssen A (2019) Fuzzy regression analysis: systematic review and bibliography. Appl Soft Comput 84:105708CrossRef Chukhrova N, Johannssen A (2019) Fuzzy regression analysis: systematic review and bibliography. Appl Soft Comput 84:105708CrossRef
58.
go back to reference Mosleh M, Otadi M, Abbasbandy S (2010) Evaluation of fuzzy regression models by fuzzy neural network. J Comput Appl Math 234(3):825–834MathSciNetMATHCrossRef Mosleh M, Otadi M, Abbasbandy S (2010) Evaluation of fuzzy regression models by fuzzy neural network. J Comput Appl Math 234(3):825–834MathSciNetMATHCrossRef
59.
go back to reference Karbasi D, Nazemi A, Rabiei M (2020) A parametric recurrent neural network scheme for solving a class of fuzzy regression models with some real-world applications. Soft Comput 24:11159–11187CrossRef Karbasi D, Nazemi A, Rabiei M (2020) A parametric recurrent neural network scheme for solving a class of fuzzy regression models with some real-world applications. Soft Comput 24:11159–11187CrossRef
60.
go back to reference Fazlollahtabar H, Gholizadeh H (2020) Fuzzy possibility regression integrated with fuzzy adaptive neural network for predicting and optimizing electrical discharge machining parameters. Comput Ind Eng 140:106225CrossRef Fazlollahtabar H, Gholizadeh H (2020) Fuzzy possibility regression integrated with fuzzy adaptive neural network for predicting and optimizing electrical discharge machining parameters. Comput Ind Eng 140:106225CrossRef
61.
go back to reference Ishibuchi H, Kwon K, Tanaka H (1995) A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets Syst 71(3):277–293CrossRef Ishibuchi H, Kwon K, Tanaka H (1995) A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets Syst 71(3):277–293CrossRef
62.
go back to reference Hayashi Y, Buckley JJ, Czogala E (1993) Fuzzy neural network with fuzzy signals and weights. Int J Intell Syst 8(4):527–537MATHCrossRef Hayashi Y, Buckley JJ, Czogala E (1993) Fuzzy neural network with fuzzy signals and weights. Int J Intell Syst 8(4):527–537MATHCrossRef
63.
go back to reference Buckley J, Eslami E (1997) Neural net solutions to fuzzy problems: The quadratic equation. Fuzzy Sets Syst 86(3):289–298MATHCrossRef Buckley J, Eslami E (1997) Neural net solutions to fuzzy problems: The quadratic equation. Fuzzy Sets Syst 86(3):289–298MATHCrossRef
64.
go back to reference Modarres M, Nasrabadi E, Nasrabadi MM (2004) Fuzzy linear regression analysis from the point of view risk. Int J Uncertain Fuzziness Knowl Based Syst 12(5):635–649MathSciNetMATHCrossRef Modarres M, Nasrabadi E, Nasrabadi MM (2004) Fuzzy linear regression analysis from the point of view risk. Int J Uncertain Fuzziness Knowl Based Syst 12(5):635–649MathSciNetMATHCrossRef
65.
go back to reference Coppi R, DUrso P, Giordani P, Santoro A (2006) Least squares estimation of a linear regression model with lr fuzzy response. Comput Stat Data Anal 51(1):267–286MathSciNetMATHCrossRef Coppi R, DUrso P, Giordani P, Santoro A (2006) Least squares estimation of a linear regression model with lr fuzzy response. Comput Stat Data Anal 51(1):267–286MathSciNetMATHCrossRef
66.
go back to reference DUrso P, Santoro A (2006) Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable. Comput Stat Data Anal 51(1):287–313MathSciNetMATHCrossRef DUrso P, Santoro A (2006) Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable. Comput Stat Data Anal 51(1):287–313MathSciNetMATHCrossRef
68.
69.
go back to reference Mosleh M, Allahviranloo T, Otadi M (2012) Evaluation of fully fuzzy regression models by fuzzy neural network. Neural Comput Appl 21(1):105–112CrossRef Mosleh M, Allahviranloo T, Otadi M (2012) Evaluation of fully fuzzy regression models by fuzzy neural network. Neural Comput Appl 21(1):105–112CrossRef
70.
go back to reference Otadi M (2014) Fully fuzzy polynomial regression with fuzzy neural networks. Neurocomputing 142:486–493CrossRef Otadi M (2014) Fully fuzzy polynomial regression with fuzzy neural networks. Neurocomputing 142:486–493CrossRef
71.
go back to reference Roh SB, Ahn TC, Pedrycz W (2012) Fuzzy linear regression based on polynomial neural networks. Expert Syst Appl 39(10):8909–8928CrossRef Roh SB, Ahn TC, Pedrycz W (2012) Fuzzy linear regression based on polynomial neural networks. Expert Syst Appl 39(10):8909–8928CrossRef
72.
go back to reference He YL, Wang XZ, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364:222–240MATHCrossRef He YL, Wang XZ, Huang JZ (2016) Fuzzy nonlinear regression analysis using a random weight network. Inf Sci 364:222–240MATHCrossRef
73.
go back to reference He YL, Wei CH, Long H, Ashfaq RAR, Huang JZ (2018) Random weight network-based fuzzy nonlinear regression for trapezoidal fuzzy number data. Appl Soft Comput 70:959–979CrossRef He YL, Wei CH, Long H, Ashfaq RAR, Huang JZ (2018) Random weight network-based fuzzy nonlinear regression for trapezoidal fuzzy number data. Appl Soft Comput 70:959–979CrossRef
74.
go back to reference Pehlivan NY, Apaydın A (2016) Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output. Complex Intell Syst 2(1):61–73CrossRef Pehlivan NY, Apaydın A (2016) Fuzzy radial basis function network for fuzzy regression with fuzzy input and fuzzy output. Complex Intell Syst 2(1):61–73CrossRef
76.
go back to reference Snee RD, Marquardt DW (1984) Comment: collinearity diagnostics depend on the domain of prediction, the model, and the data. Am Stat 38(2):83–87 Snee RD, Marquardt DW (1984) Comment: collinearity diagnostics depend on the domain of prediction, the model, and the data. Am Stat 38(2):83–87
77.
go back to reference Marquaridt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12(3):591–612CrossRef Marquaridt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12(3):591–612CrossRef
78.
go back to reference Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: Identifying influential data and sources of collinearity, vol 571. John Wiley & Sons, New JerseyMATH Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: Identifying influential data and sources of collinearity, vol 571. John Wiley & Sons, New JerseyMATH
79.
go back to reference Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. John Wiley & Sons, New JerseyMATH Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. John Wiley & Sons, New JerseyMATH
80.
go back to reference Nazemi A (2018) A capable neural network framework for solving degenerate quadratic optimization problems with an application in image fusion. Neural Process Lett 47(1):167–192CrossRef Nazemi A (2018) A capable neural network framework for solving degenerate quadratic optimization problems with an application in image fusion. Neural Process Lett 47(1):167–192CrossRef
81.
go back to reference Xu R (1991) A linear regression model in fuzzy environment. Adv Model Simul 27:31–40MATH Xu R (1991) A linear regression model in fuzzy environment. Adv Model Simul 27:31–40MATH
83.
go back to reference Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, BerlinMATHCrossRef Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, BerlinMATHCrossRef
84.
85.
go back to reference Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192CrossRef Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192CrossRef
86.
go back to reference Hesamian G, Akbari MG (2019) Fuzzy lasso regression model with exact explanatory variables and fuzzy responses. Int J Approx Reason 115:290–300MathSciNetMATHCrossRef Hesamian G, Akbari MG (2019) Fuzzy lasso regression model with exact explanatory variables and fuzzy responses. Int J Approx Reason 115:290–300MathSciNetMATHCrossRef
87.
go back to reference Hong DH, Hwang C, Ahn C (2004) Ridge estimation for regression models with crisp inputs and gaussian fuzzy output. Fuzzy Sets Syst 142(2):307–319MathSciNetMATHCrossRef Hong DH, Hwang C, Ahn C (2004) Ridge estimation for regression models with crisp inputs and gaussian fuzzy output. Fuzzy Sets Syst 142(2):307–319MathSciNetMATHCrossRef
88.
go back to reference McDonald GC, Galarneau DI (1975) A monte carlo evaluation of some ridge-type estimators. J Am Stat Assoc 70(350):407–416MATHCrossRef McDonald GC, Galarneau DI (1975) A monte carlo evaluation of some ridge-type estimators. J Am Stat Assoc 70(350):407–416MATHCrossRef
Metadata
Title
An Optimization Technique for Solving a Class of Ridge Fuzzy Regression Problems
Authors
Delara Karbasi
Alireza Nazemi
Mohammad Reza Rabiei
Publication date
07-06-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 5/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10538-2

Other articles of this Issue 5/2021

Neural Processing Letters 5/2021 Go to the issue