Skip to main content
Top

2017 | OriginalPaper | Chapter

12. An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane

Authors : Izazi Azzahidah Amin, Joon Ching Juan, Chin Wei Lai

Published in: Organic-Inorganic Composite Polymer Electrolyte Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fuel cells provide high efficiency, clean energy and low/zero emission compared to fossil-based energy. The most important component of fuel cell systems is polymer electrolyte membrane (PEM), which acts as a charge carrier that transports proton (H+) ion from anode to cathode, as well as a barrier for anode fuel and cathode oxidant gas. Therefore, the basic requirements in terms of PEM performance include (1) good mechanical strength and toughness, (2) high thermal and chemical stability, (3) a good barrier for anode H2 and cathode O2, (4) a good proton conductance and (5) low electron conductance. In this chapter, the important attributes of PEM, such as chemical and mechanical stabilities have been described and reviewed. Efforts have been made to highlight the responses of chemical and mechanical stabilities of membrane at different temperatures and relative humidities of the fuel cell operation that lead to cell failure. A literature review regarding the chemical and mechanical degradation of membrane as well as the mitigation for the membrane degradation has also presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang H, Li H, Yuan XZ (2011) PEM fuel cell failure mode analysis. CRC Press, Boca Raton Wang H, Li H, Yuan XZ (2011) PEM fuel cell failure mode analysis. CRC Press, Boca Raton
2.
go back to reference Zhou T et al (2015) A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J Power Sources 293:946–975CrossRef Zhou T et al (2015) A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J Power Sources 293:946–975CrossRef
3.
go back to reference An D et al (2016) Gradiently crosslinked polymer electrolyte membranes in fuel cells. J Power Sources 301:204–209CrossRef An D et al (2016) Gradiently crosslinked polymer electrolyte membranes in fuel cells. J Power Sources 301:204–209CrossRef
4.
go back to reference Tanaka M (2016) Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym J 48(1):51–58CrossRef Tanaka M (2016) Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym J 48(1):51–58CrossRef
5.
go back to reference Sanchez DG et al (2016) Analysis of the influence of temperature and gas humidity on the performance stability of polymer electrolyte membrane fuel cells. J Electrochem Soc 163(3):F150–F159CrossRef Sanchez DG et al (2016) Analysis of the influence of temperature and gas humidity on the performance stability of polymer electrolyte membrane fuel cells. J Electrochem Soc 163(3):F150–F159CrossRef
6.
go back to reference Fang J et al (2015) Electrochemical polymer electrolyte membranes. CRC Press, Boca Raton Fang J et al (2015) Electrochemical polymer electrolyte membranes. CRC Press, Boca Raton
7.
go back to reference Nasef MM et al (2016) Radiation-grafted materials for energy conversion and energy storage applications. Prog Polym Sci Nasef MM et al (2016) Radiation-grafted materials for energy conversion and energy storage applications. Prog Polym Sci
8.
go back to reference Zakaria Z, Kamarudin SK, Timmiati S (2016) Membranes for direct ethanol fuel cells: an overview. Appl Energy 163:334–342CrossRef Zakaria Z, Kamarudin SK, Timmiati S (2016) Membranes for direct ethanol fuel cells: an overview. Appl Energy 163:334–342CrossRef
9.
go back to reference Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26CrossRef Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26CrossRef
10.
go back to reference Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRef Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRef
11.
go back to reference Gubler L, Scherer GG (2010) Trends for fuel cell membrane development. Desalination 250(3):1034–1037CrossRef Gubler L, Scherer GG (2010) Trends for fuel cell membrane development. Desalination 250(3):1034–1037CrossRef
12.
go back to reference Li Q et al (2015) High temperature polymer electrolyte membrane fuel cells: approaches, status, and perspectives. Springer International Publishing Li Q et al (2015) High temperature polymer electrolyte membrane fuel cells: approaches, status, and perspectives. Springer International Publishing
13.
go back to reference Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270CrossRef
14.
go back to reference Letcher TM (2008) Future energy: improved, sustainable and clean options for our planet. Elsevier Science Letcher TM (2008) Future energy: improved, sustainable and clean options for our planet. Elsevier Science
15.
go back to reference Beguin F, Frackowiak E (2009) Carbons for electrochemical energy storage and conversion systems. CRC Press, Boca Raton Beguin F, Frackowiak E (2009) Carbons for electrochemical energy storage and conversion systems. CRC Press, Boca Raton
16.
go back to reference Pabby AK, Rizvi SSH, Requena AMS (2015) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. CRC Press, Boca Raton Pabby AK, Rizvi SSH, Requena AMS (2015) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. CRC Press, Boca Raton
17.
go back to reference Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112(5):2780–2832CrossRef Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112(5):2780–2832CrossRef
18.
go back to reference Matos BR et al (2016) Nafion membranes annealed at high temperature and controlled humidity: structure, conductivity, and fuel cell performance. Electrochim Acta 196:110–117CrossRef Matos BR et al (2016) Nafion membranes annealed at high temperature and controlled humidity: structure, conductivity, and fuel cell performance. Electrochim Acta 196:110–117CrossRef
19.
go back to reference Pan J et al (2015) Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chem Mater 27(19):6689–6698CrossRef Pan J et al (2015) Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chem Mater 27(19):6689–6698CrossRef
20.
go back to reference Kim S-U et al (2015) Effect of sulfonated poly(arylene ether sulfone) binder on the performance of polymer electrolyte membrane fuel cells. J Ind Eng Chem 23:316–320CrossRef Kim S-U et al (2015) Effect of sulfonated poly(arylene ether sulfone) binder on the performance of polymer electrolyte membrane fuel cells. J Ind Eng Chem 23:316–320CrossRef
21.
go back to reference Yang Z et al (2016) Stability challenge in anion exchange membrane for fuel cells. Current Opin Chem Eng 12:22–30CrossRef Yang Z et al (2016) Stability challenge in anion exchange membrane for fuel cells. Current Opin Chem Eng 12:22–30CrossRef
22.
go back to reference Kim J et al (2016) Mesoporous ceria-silica/poly(arylene ether sulfone) composite membranes for durability of fuel cell electrolyte membrane. Microporous Mesoporous Mater Kim J et al (2016) Mesoporous ceria-silica/poly(arylene ether sulfone) composite membranes for durability of fuel cell electrolyte membrane. Microporous Mesoporous Mater
23.
go back to reference Cheng J et al (2016) Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application. J Membr Sci 501:100–108CrossRef Cheng J et al (2016) Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application. J Membr Sci 501:100–108CrossRef
24.
go back to reference Tanuma T, Itoh T (2016) Clarifying the chemical state of additives in membranes for polymer electrolyte fuel cells by X-ray absorption fine structure. J Power Sources 305:17–21CrossRef Tanuma T, Itoh T (2016) Clarifying the chemical state of additives in membranes for polymer electrolyte fuel cells by X-ray absorption fine structure. J Power Sources 305:17–21CrossRef
25.
go back to reference Zhang Y et al (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3(7):675–691CrossRef Zhang Y et al (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3(7):675–691CrossRef
26.
go back to reference Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52CrossRef Kim DJ, Jo MJ, Nam SY (2015) A review of polymer-nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52CrossRef
27.
go back to reference Poornesh KK, Cho C (2015) Stability of polymer electrolyte membranes in fuel cells: initial attempts to bridge physical and chemical degradation modes. Fuel Cells 15(1):196–203CrossRef Poornesh KK, Cho C (2015) Stability of polymer electrolyte membranes in fuel cells: initial attempts to bridge physical and chemical degradation modes. Fuel Cells 15(1):196–203CrossRef
28.
go back to reference Marrony M et al (2008) Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions. J Power Sources 182(2):469–475CrossRef Marrony M et al (2008) Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions. J Power Sources 182(2):469–475CrossRef
29.
go back to reference Büchi FN, Inaba M, Schmidt TJ (2009) Polymer electrolyte fuel cell durability. Springer, New York Büchi FN, Inaba M, Schmidt TJ (2009) Polymer electrolyte fuel cell durability. Springer, New York
30.
go back to reference Neburchilov V et al (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238CrossRef Neburchilov V et al (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238CrossRef
31.
go back to reference Fiori C et al (2015) Critical review of fuel cell’s membranes and identification of alternative types for automotive applications. Int J Hydrogen Energy 40(35):11949–11959CrossRef Fiori C et al (2015) Critical review of fuel cell’s membranes and identification of alternative types for automotive applications. Int J Hydrogen Energy 40(35):11949–11959CrossRef
32.
go back to reference Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41(6):2382–2394CrossRef Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41(6):2382–2394CrossRef
33.
go back to reference Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28(12):7303–7330CrossRef Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28(12):7303–7330CrossRef
34.
go back to reference Zhang L et al (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97CrossRef Zhang L et al (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97CrossRef
35.
go back to reference Haile SM (2003) Fuel cell materials and components? Acta Mater 51(19):5981–6000CrossRef Haile SM (2003) Fuel cell materials and components? Acta Mater 51(19):5981–6000CrossRef
36.
go back to reference Velan Venkatesan S et al (2016) Progression in the morphology of fuel cell membranes upon conjoint chemical and mechanical degradation. J Electrochem Soc 163(7): F637–F643 Velan Venkatesan S et al (2016) Progression in the morphology of fuel cell membranes upon conjoint chemical and mechanical degradation. J Electrochem Soc 163(7): F637–F643
37.
go back to reference Shao Y et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242CrossRef Shao Y et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242CrossRef
38.
go back to reference Tavassoli A et al (2016) Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells. J Power Sources 322:17–25CrossRef Tavassoli A et al (2016) Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells. J Power Sources 322:17–25CrossRef
39.
go back to reference Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180(1):1–14CrossRef Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180(1):1–14CrossRef
40.
go back to reference Wu J et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119CrossRef Wu J et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119CrossRef
41.
go back to reference Yuan XZ et al (2011) A review of polymer electrolyte membrane fuel cell durability test protocols. J Power Sources 196(22):9107–9116CrossRef Yuan XZ et al (2011) A review of polymer electrolyte membrane fuel cell durability test protocols. J Power Sources 196(22):9107–9116CrossRef
42.
go back to reference Wang Y et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007CrossRef Wang Y et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007CrossRef
43.
go back to reference Hickner MA et al (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104(10):4587–4612CrossRef Hickner MA et al (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104(10):4587–4612CrossRef
44.
go back to reference Macauley N et al (2015) Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability. J Power Sources 299:139–148CrossRef Macauley N et al (2015) Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability. J Power Sources 299:139–148CrossRef
45.
go back to reference Bose S et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843CrossRef Bose S et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36(6):813–843CrossRef
46.
go back to reference Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979CrossRef Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36(7):945–979CrossRef
47.
go back to reference Thiam HS et al (2011) Overview on nanostructured membrane in fuel cell applications. Int J Hydrogen Energy 36(4):3187–3205CrossRef Thiam HS et al (2011) Overview on nanostructured membrane in fuel cell applications. Int J Hydrogen Energy 36(4):3187–3205CrossRef
48.
go back to reference Gourdoupi N et al (2008) New high temperature polymer electrolyte membranes. Influence of the chemical structure on their properties. Fuel Cells 8(3–4):200–208CrossRef Gourdoupi N et al (2008) New high temperature polymer electrolyte membranes. Influence of the chemical structure on their properties. Fuel Cells 8(3–4):200–208CrossRef
Metadata
Title
An Overview of Chemical and Mechanical Stabilities of Polymer Electrolytes Membrane
Authors
Izazi Azzahidah Amin
Joon Ching Juan
Chin Wei Lai
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52739-0_12

Premium Partners