Skip to main content
Top
Published in:

14-06-2023 | Original Article

An SPH-based FSI framework for phase-field modeling of brittle fracture under extreme hydrodynamic events

Authors: Mohammad Naqib Rahimi, Georgios Moutsanidis

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a proof-of-concept particle-based fluid–structure interaction (FSI) computational framework for modeling structural fracture and fragmentation under the impact of extreme hydrodynamic events. The smoothed particle hydrodynamics (SPH) approach is employed to discretize the equations of motion for both the fluid and structural domains. The meshfree nature of the discretization technique accommodates the simulation of scenarios involving extreme structural deformations and material separation, as well as free-surface flows. The framework is supplemented with a phase-field model of brittle fracture that allows for the simulation of crack nucleation, propagation, and branching, which leads to realistic modeling of structural responses during extreme hydrodynamic events. In the end, a novel algorithm for coupling the fluid and solid subproblems is presented. The proposed approach is verified and validated against existing computational methods and experimental results, and in the end, a few challenging problems involving complex fracture patterns and fragmentation are presented.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Najibi N, Devineni N (2018) Recent trends in the frequency and duration of global floods. Earth Syst Dyn 9(2):757–783 Najibi N, Devineni N (2018) Recent trends in the frequency and duration of global floods. Earth Syst Dyn 9(2):757–783
2.
go back to reference NOAA NCEI (2022) Noaa national centers for environmental information (NCEI) U.S. billion-dollar weather and climate disasters NOAA NCEI (2022) Noaa national centers for environmental information (NCEI) U.S. billion-dollar weather and climate disasters
3.
go back to reference Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MATH Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406MATH
4.
go back to reference Chen LF, Zang J, Hillis AJ, Morgan GCJ, Plummer AR (2014) Numerical investigation of wave-structure interaction using OpenFoam. Ocean Eng 88:91–109 Chen LF, Zang J, Hillis AJ, Morgan GCJ, Plummer AR (2014) Numerical investigation of wave-structure interaction using OpenFoam. Ocean Eng 88:91–109
5.
go back to reference Wei Z, Dalrymple RA, Hérault A, Bilotta G, Rustico E, Yeh H (2015) SPH modeling of dynamic impact of tsunami bore on bridge piers. Coast Eng 104:26–42 Wei Z, Dalrymple RA, Hérault A, Bilotta G, Rustico E, Yeh H (2015) SPH modeling of dynamic impact of tsunami bore on bridge piers. Coast Eng 104:26–42
6.
go back to reference Akbari H (2017) Simulation of wave overtopping using an improved SPH method. Coast Eng 126:51–68 Akbari H (2017) Simulation of wave overtopping using an improved SPH method. Coast Eng 126:51–68
7.
go back to reference Sarfaraz M, Pak A (2017) SPH numerical simulation of tsunami wave forces impinged on bridge superstructures. Coast Eng 121:145–157 Sarfaraz M, Pak A (2017) SPH numerical simulation of tsunami wave forces impinged on bridge superstructures. Coast Eng 121:145–157
8.
go back to reference Arabi MG, Sogut DV, Khosronejad A, Yalciner AC, Farhadzadeh A (2019) A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure. Coast Eng 147:43–62 Arabi MG, Sogut DV, Khosronejad A, Yalciner AC, Farhadzadeh A (2019) A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure. Coast Eng 147:43–62
9.
go back to reference Xie Z, Stoesser T (2020) Two-phase flow simulation of breaking solitary waves over surface-piercing and submerged conical structures. Ocean Eng 213:107679 Xie Z, Stoesser T (2020) Two-phase flow simulation of breaking solitary waves over surface-piercing and submerged conical structures. Ocean Eng 213:107679
10.
go back to reference Bagherizadeh E, Zhang Z, Farhadzadeh A, Angelidis D, Ghazian Arabi M, Moghimi S, Khosronejad A (2021) Numerical modelling of solitary wave and structure interactions using level-set and immersed boundary methods by adopting adequate inlet boundary conditions. J Hydraul Res 59(4):559–585 Bagherizadeh E, Zhang Z, Farhadzadeh A, Angelidis D, Ghazian Arabi M, Moghimi S, Khosronejad A (2021) Numerical modelling of solitary wave and structure interactions using level-set and immersed boundary methods by adopting adequate inlet boundary conditions. J Hydraul Res 59(4):559–585
11.
go back to reference Sogut DV, Sogut E, Farhadzadeh A (2021) Interaction of a solitary wave with an array of macro-roughness elements in the presence of steady currents. Coast Eng 164:103829 Sogut DV, Sogut E, Farhadzadeh A (2021) Interaction of a solitary wave with an array of macro-roughness elements in the presence of steady currents. Coast Eng 164:103829
12.
go back to reference Sogut E, Sogut DV, Farhadzadeh A (2021) A comparative study of interaction of random waves with a cluster of structures on a berm with rans and les models. Coast Eng 168:103941 Sogut E, Sogut DV, Farhadzadeh A (2021) A comparative study of interaction of random waves with a cluster of structures on a berm with rans and les models. Coast Eng 168:103941
13.
go back to reference Oñate E, Garcıa J (2001) A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191(6–7):635–660MATH Oñate E, Garcıa J (2001) A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191(6–7):635–660MATH
14.
go back to reference Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput Fluids 36(1):169–183MATH Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput Fluids 36(1):169–183MATH
15.
go back to reference Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetMATH Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetMATH
16.
go back to reference Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetMATH Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetMATH
17.
go back to reference Bazilevs Y, Yan J, Deng X, Korobenko A (2019) Computer modeling of wind turbines: 2. Free-surface FSI and fatigue-damage. Arch Comput Methods Eng 26(4):1101–1115MathSciNet Bazilevs Y, Yan J, Deng X, Korobenko A (2019) Computer modeling of wind turbines: 2. Free-surface FSI and fatigue-damage. Arch Comput Methods Eng 26(4):1101–1115MathSciNet
18.
go back to reference Yan J, Deng X, Fei X, Songzhe X, Zhu Q (2020) Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows. J Appl Mech 87(6) Yan J, Deng X, Fei X, Songzhe X, Zhu Q (2020) Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows. J Appl Mech 87(6)
19.
go back to reference Chen Z-P, Zhang X, Sze KY, Kan L, Qiu X-M (2018) vp material point method for weakly compressible problems. Comput Fluids 176:170–181MathSciNetMATH Chen Z-P, Zhang X, Sze KY, Kan L, Qiu X-M (2018) vp material point method for weakly compressible problems. Comput Fluids 176:170–181MathSciNetMATH
20.
go back to reference Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid–structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195(17–18):2100–2123MathSciNetMATH Idelsohn SR, Oñate E, Del Pin F, Calvo N (2006) Fluid–structure interaction using the particle finite element method. Comput Methods Appl Mech Eng 195(17–18):2100–2123MathSciNetMATH
21.
go back to reference Yang X, Liu M, Peng S, Huang C (2016) Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method. Coast Eng 108:56–64 Yang X, Liu M, Peng S, Huang C (2016) Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method. Coast Eng 108:56–64
22.
go back to reference Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164MathSciNetMATH Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164MathSciNetMATH
23.
go back to reference Zhan L, Peng C, Zhang B, Wei W (2019) A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction. J Fluids Struct 86:329–353 Zhan L, Peng C, Zhang B, Wei W (2019) A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction. J Fluids Struct 86:329–353
24.
go back to reference Sun PN, Le Touzé D, Zhang A-M (2019) Study of a complex fluid–structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Eng Anal Bound Elem 104:240–258MathSciNetMATH Sun PN, Le Touzé D, Zhang A-M (2019) Study of a complex fluid–structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Eng Anal Bound Elem 104:240–258MathSciNetMATH
25.
go back to reference Ng KC, Alexiadis A, Chen H, Sheu TWH (2020) A coupled smoothed particle hydrodynamics-volume compensated particle method (SPH-VCPM) for fluid structure interaction (FSI) modelling. Ocean Eng 218:107923 Ng KC, Alexiadis A, Chen H, Sheu TWH (2020) A coupled smoothed particle hydrodynamics-volume compensated particle method (SPH-VCPM) for fluid structure interaction (FSI) modelling. Ocean Eng 218:107923
26.
go back to reference Sun P-N, Le Touze D, Oger G, Zhang A-M (2021) An accurate FSI-SPH modeling of challenging fluid–structure interaction problems in two and three dimensions. Ocean Eng 221:108552 Sun P-N, Le Touze D, Oger G, Zhang A-M (2021) An accurate FSI-SPH modeling of challenging fluid–structure interaction problems in two and three dimensions. Ocean Eng 221:108552
27.
go back to reference Khayyer A, Shimizu Y, Gotoh H, Hattori S (2021) Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid–structure interactions in ocean engineering. Ocean Eng 226:108652 Khayyer A, Shimizu Y, Gotoh H, Hattori S (2021) Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid–structure interactions in ocean engineering. Ocean Eng 226:108652
28.
go back to reference O’Connor J, Rogers BD (2021) A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct 104:103312 O’Connor J, Rogers BD (2021) A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct 104:103312
29.
go back to reference Lyu H-G, Sun P-N, Huang X-T, Chen S-H, Zhang A-M (2021) On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering. Appl Ocean Res 117:102938 Lyu H-G, Sun P-N, Huang X-T, Chen S-H, Zhang A-M (2021) On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering. Appl Ocean Res 117:102938
30.
go back to reference O’Connor J, Revell A (2019) Dynamic interactions of multiple wall-mounted flexible flaps. J Fluid Mech 870:189–216MathSciNet O’Connor J, Revell A (2019) Dynamic interactions of multiple wall-mounted flexible flaps. J Fluid Mech 870:189–216MathSciNet
31.
go back to reference Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147 Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147
32.
go back to reference McLoone M, Quinlan NJ (2022) Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures. Eur J Mech B Fluids 92:117–131MathSciNetMATH McLoone M, Quinlan NJ (2022) Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures. Eur J Mech B Fluids 92:117–131MathSciNetMATH
33.
go back to reference Gotoh H, Khayyer A, Shimizu Y (2021) Entirely Lagrangian meshfree computational methods for hydroelastic fluid–structure interactions in ocean engineering-reliability, adaptivity and generality. Appl Ocean Res 115:102822 Gotoh H, Khayyer A, Shimizu Y (2021) Entirely Lagrangian meshfree computational methods for hydroelastic fluid–structure interactions in ocean engineering-reliability, adaptivity and generality. Appl Ocean Res 115:102822
34.
go back to reference Khayyer A, Gotoh H, Shimizu Y (2022) On systematic development of FSI solvers in the context of particle methods. J Hydrodyn 34(3):395–407 Khayyer A, Gotoh H, Shimizu Y (2022) On systematic development of FSI solvers in the context of particle methods. J Hydrodyn 34(3):395–407
35.
go back to reference Cirak F, Deiterding R, Mauch SP (2007) Large-scale fluid–structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations. Comput Struct 85(11–14):1049–1065 Cirak F, Deiterding R, Mauch SP (2007) Large-scale fluid–structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations. Comput Struct 85(11–14):1049–1065
36.
go back to reference Wang KG, Lea P, Farhat C (2015) A computational framework for the simulation of high-speed multi-material fluid–structure interaction problems with dynamic fracture. Int J Numer Methods Eng 104(7):585–623MathSciNetMATH Wang KG, Lea P, Farhat C (2015) A computational framework for the simulation of high-speed multi-material fluid–structure interaction problems with dynamic fracture. Int J Numer Methods Eng 104(7):585–623MathSciNetMATH
37.
go back to reference Moutsanidis G, Kamensky D, Chen JS, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: Part II-immersed IGA–RKPM coupling for air-blast–structure interaction. J Mech Phys Solids 121:114–132MathSciNet Moutsanidis G, Kamensky D, Chen JS, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: Part II-immersed IGA–RKPM coupling for air-blast–structure interaction. J Mech Phys Solids 121:114–132MathSciNet
38.
go back to reference Behzadinasab M, Moutsanidis G, Trask N, Foster JT, Bazilevs Y (2021) Coupling of IGA and peridynamics for air-blast fluid–structure interaction using an immersed approach. Forces Mech 4:100045 Behzadinasab M, Moutsanidis G, Trask N, Foster JT, Bazilevs Y (2021) Coupling of IGA and peridynamics for air-blast fluid–structure interaction using an immersed approach. Forces Mech 4:100045
39.
go back to reference Ni R, Li J, Zhang X, Zhou X, Cui X (2022) An immersed boundary-material point method for shock-structure interaction and dynamic fracture. J Comput Phys 470:111558MathSciNetMATH Ni R, Li J, Zhang X, Zhou X, Cui X (2022) An immersed boundary-material point method for shock-structure interaction and dynamic fracture. J Comput Phys 470:111558MathSciNetMATH
40.
go back to reference Rahimi MN, Kolukisa DC, Yildiz M, Ozbulut M, Kefal A (2022) A generalized hybrid smoothed particle hydrodynamics-peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid–structure interaction problems. Comput Methods Appl Mech Eng 389:114370MathSciNetMATH Rahimi MN, Kolukisa DC, Yildiz M, Ozbulut M, Kefal A (2022) A generalized hybrid smoothed particle hydrodynamics-peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid–structure interaction problems. Comput Methods Appl Mech Eng 389:114370MathSciNetMATH
41.
go back to reference Yao X, Huang D (2022) Coupled PD-SPH modeling for fluid–structure interaction problems with large deformation and fracturing. Comput Struct 270:106847 Yao X, Huang D (2022) Coupled PD-SPH modeling for fluid–structure interaction problems with large deformation and fracturing. Comput Struct 270:106847
42.
go back to reference Sun W-K, Zhang L-W, Liew KM (2022) A coupled SPH-PD model for fluid–structure interaction in an irregular channel flow considering the structural failure. Comput Methods Appl Mech Eng 401:115573MathSciNetMATH Sun W-K, Zhang L-W, Liew KM (2022) A coupled SPH-PD model for fluid–structure interaction in an irregular channel flow considering the structural failure. Comput Methods Appl Mech Eng 401:115573MathSciNetMATH
43.
go back to reference Ke W, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161 Ke W, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161
44.
go back to reference Ng KC, Low WC, Chen H, Tafuni A, Nakayama A (2022) A three-dimensional fluid–structure interaction model based on SPH and lattice-spring method for simulating complex hydroelastic problems. Ocean Eng 260:112026 Ng KC, Low WC, Chen H, Tafuni A, Nakayama A (2022) A three-dimensional fluid–structure interaction model based on SPH and lattice-spring method for simulating complex hydroelastic problems. Ocean Eng 260:112026
45.
go back to reference Yang F, Xin G, Xia X, Zhang Q (2022) A peridynamics-immersed boundary-lattice Boltzmann method for fluid–structure interaction analysis. Ocean Eng 264:112528 Yang F, Xin G, Xia X, Zhang Q (2022) A peridynamics-immersed boundary-lattice Boltzmann method for fluid–structure interaction analysis. Ocean Eng 264:112528
46.
go back to reference Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95MathSciNetMATH Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95MathSciNetMATH
47.
go back to reference Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389MATH Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389MATH
48.
go back to reference Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75MATH Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75MATH
49.
go back to reference Monaghan JJ, Kos A (1999) Solitary waves on a cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–155 Monaghan JJ, Kos A (1999) Solitary waves on a cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–155
50.
go back to reference Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. CMC-Tech Science Press- 4(3):181MathSciNetMATH Vignjevic R, Reveles JR, Campbell J (2006) SPH in a total Lagrangian formalism. CMC-Tech Science Press- 4(3):181MathSciNetMATH
51.
go back to reference Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetMATH Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetMATH
52.
go back to reference Vacondio R, Rogers BD, Stansby PK, Mignosa P, Feldman J (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148MathSciNetMATH Vacondio R, Rogers BD, Stansby PK, Mignosa P, Feldman J (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148MathSciNetMATH
53.
go back to reference Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas RJFB, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216MATH Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas RJFB, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216MATH
54.
go back to reference Fourtakas G, Stansby PK, Rogers BD, Lind SJ, Yan S, Ma Q (2018) On the coupling of incompressible SPH with a finite element potential flow solver for nonlinear free-surface flows. Int J Offsh Polar Eng 28(03):248–254 Fourtakas G, Stansby PK, Rogers BD, Lind SJ, Yan S, Ma Q (2018) On the coupling of incompressible SPH with a finite element potential flow solver for nonlinear free-surface flows. Int J Offsh Polar Eng 28(03):248–254
55.
go back to reference Fourtakas G, Rogers BD, Nasar AMA (2021) Towards pseudo-spectral incompressible smoothed particle hydrodynamics (ISPH). Comput Phys Commun 266:108028MathSciNetMATH Fourtakas G, Rogers BD, Nasar AMA (2021) Towards pseudo-spectral incompressible smoothed particle hydrodynamics (ISPH). Comput Phys Commun 266:108028MathSciNetMATH
56.
go back to reference King JRC, Lind SJ, Rogers BD, Stansby PK, Vacondio R (2022) Large eddy simulations of bubbly flows and breaking waves with smoothed particle hydrodynamics. arXiv:2206.01641 King JRC, Lind SJ, Rogers BD, Stansby PK, Vacondio R (2022) Large eddy simulations of bubbly flows and breaking waves with smoothed particle hydrodynamics. arXiv:​2206.​01641
57.
go back to reference Feng R, Fourtakas G, Rogers BD, Lombardi D (2022) Two-phase fully-coupled smoothed particle hydrodynamics (SPH) model for unsaturated soils and its application to rainfall-induced slope collapse. Comput Geotech 151:104964 Feng R, Fourtakas G, Rogers BD, Lombardi D (2022) Two-phase fully-coupled smoothed particle hydrodynamics (SPH) model for unsaturated soils and its application to rainfall-induced slope collapse. Comput Geotech 151:104964
58.
go back to reference Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778MathSciNetMATH Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778MathSciNetMATH
59.
go back to reference Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetMATH Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetMATH
60.
go back to reference Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405MathSciNetMATH Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405MathSciNetMATH
61.
go back to reference Kakouris EG, Triantafyllou SP (2017) Phase-field material point method for brittle fracture. Int J Numer Methods Eng 112(12):1750–1776MathSciNet Kakouris EG, Triantafyllou SP (2017) Phase-field material point method for brittle fracture. Int J Numer Methods Eng 112(12):1750–1776MathSciNet
62.
go back to reference Kamensky D, Moutsanidis G, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: part I-theory and simulations. J Mech Phys Solids 121:81–98MathSciNet Kamensky D, Moutsanidis G, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: part I-theory and simulations. J Mech Phys Solids 121:81–98MathSciNet
63.
go back to reference Svolos L, Bronkhorst CA, Waisman H (2020) Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method. J Mech Phys Solids 137:103861MathSciNet Svolos L, Bronkhorst CA, Waisman H (2020) Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method. J Mech Phys Solids 137:103861MathSciNet
64.
go back to reference Kristensen PK, Niordson CF, Martínez-Paneda E (2020) Applications of phase field fracture in modelling hydrogen assisted failures. Theor Appl Fract Mech 110:102837 Kristensen PK, Niordson CF, Martínez-Paneda E (2020) Applications of phase field fracture in modelling hydrogen assisted failures. Theor Appl Fract Mech 110:102837
65.
go back to reference Cui C, Ma R, Martínez-Pañeda E (2021) A phase field formulation for dissolution-driven stress corrosion cracking. J Mech Phys Solids 147:104254MathSciNet Cui C, Ma R, Martínez-Pañeda E (2021) A phase field formulation for dissolution-driven stress corrosion cracking. J Mech Phys Solids 147:104254MathSciNet
66.
go back to reference Svolos L, Mourad HM, Bronkhorst CA, Waisman H (2021) Anisotropic thermal-conductivity degradation in the phase-field method accounting for crack directionality. Eng Fract Mech 245:107554 Svolos L, Mourad HM, Bronkhorst CA, Waisman H (2021) Anisotropic thermal-conductivity degradation in the phase-field method accounting for crack directionality. Eng Fract Mech 245:107554
67.
go back to reference Svolos L, Mourad HM, Manzini G, Garikipati K (2022) A fourth-order phase-field fracture model: formulation and numerical solution using a continuous/discontinuous galerkin method. J Mech Phys Solids 165:104910MathSciNet Svolos L, Mourad HM, Manzini G, Garikipati K (2022) A fourth-order phase-field fracture model: formulation and numerical solution using a continuous/discontinuous galerkin method. J Mech Phys Solids 165:104910MathSciNet
68.
go back to reference Rahimi MN, Moutsanidis G (2022) A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. Comput Methods Appl Mech Eng 398:115191MathSciNetMATH Rahimi MN, Moutsanidis G (2022) A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. Comput Methods Appl Mech Eng 398:115191MathSciNetMATH
69.
go back to reference Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53(2–3):141–147 Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53(2–3):141–147
70.
go back to reference Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164 Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91(3):99–164
71.
go back to reference Griffith AA (1921) Vi. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221(582–593):163–198MATH Griffith AA (1921) Vi. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221(582–593):163–198MATH
72.
go back to reference Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetMATH Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetMATH
73.
go back to reference Kuhn C, Müller R (2008) A phase field model for fracture. In PAMM: Proceedings in applied mathematics and mechanics, vol 8. Wiley Online Library. p 10223–10224 Kuhn C, Müller R (2008) A phase field model for fracture. In PAMM: Proceedings in applied mathematics and mechanics, vol 8. Wiley Online Library. p 10223–10224
74.
go back to reference Rahimi MN, Moutsanidis G (2022) Modeling dynamic brittle fracture in functionally graded materials using hyperbolic phase field and smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 401:115642MathSciNetMATH Rahimi MN, Moutsanidis G (2022) Modeling dynamic brittle fracture in functionally graded materials using hyperbolic phase field and smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 401:115642MathSciNetMATH
76.
go back to reference Bonet J, Lok TSL (1999) Variational and momentum preservation aspects of Smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1–2):97–115MathSciNetMATH Bonet J, Lok TSL (1999) Variational and momentum preservation aspects of Smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1–2):97–115MathSciNetMATH
77.
go back to reference Tofighi N, Ozbulut M, Rahmat A, Feng JJ, Yildiz M (2015) An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. J Comput Phys 297:207–220MathSciNetMATH Tofighi N, Ozbulut M, Rahmat A, Feng JJ, Yildiz M (2015) An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. J Comput Phys 297:207–220MathSciNetMATH
78.
go back to reference Vincent S, Brändle JC, de Motta A, Sarthou J-LE, Simonin O, Climent E (2014) A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J Comput Phys 256:582–614MathSciNetMATH Vincent S, Brändle JC, de Motta A, Sarthou J-LE, Simonin O, Climent E (2014) A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J Comput Phys 256:582–614MathSciNetMATH
79.
go back to reference Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9):1008–1020MathSciNetMATH Shadloo MS, Zainali A, Sadek SH, Yildiz M (2011) Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies. Comput Methods Appl Mech Eng 200(9):1008–1020MathSciNetMATH
80.
go back to reference Ozbulut M, Tofighi N, Goren O, Yildiz M (2017) Investigation of wave characteristics in oscillatory motion of partially filled rectangular tanks. J Fluids Eng 140(4):12 Ozbulut M, Tofighi N, Goren O, Yildiz M (2017) Investigation of wave characteristics in oscillatory motion of partially filled rectangular tanks. J Fluids Eng 140(4):12
81.
go back to reference Khayyer A, Shimizu Y, Gotoh T, Gotoh H (2023) Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows. Appl Math Model 116:84–121MathSciNetMATH Khayyer A, Shimizu Y, Gotoh T, Gotoh H (2023) Enhanced resolution of the continuity equation in explicit weakly compressible SPH simulations of incompressible free-surface fluid flows. Appl Math Model 116:84–121MathSciNetMATH
82.
go back to reference Belytschko T, Guo Y, Kam Liu W, Ping Xiao S (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48(9):1359–1400MathSciNetMATH Belytschko T, Guo Y, Kam Liu W, Ping Xiao S (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48(9):1359–1400MathSciNetMATH
83.
go back to reference Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134MathSciNetMATH Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134MathSciNetMATH
84.
go back to reference Islam MRI, Peng C (2019) A total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157:498–511 Islam MRI, Peng C (2019) A total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157:498–511
85.
go back to reference Wang L, Fei X, Yang Y (2021) An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng Anal Bound Elem 133:286–302MathSciNetMATH Wang L, Fei X, Yang Y (2021) An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng Anal Bound Elem 133:286–302MathSciNetMATH
86.
go back to reference Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389MATH Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389MATH
87.
go back to reference Rahimi MN, Moutsanidis G (2022) A coupled total Lagrangian SPH-phase-field framework for modeling dynamic brittle fracture. In: Giuseppe B (ed) 2022 International SPHERIC work., number June. Catania, Italy. Istituto Nazionale di Geofisica e Vulcanologi. p 71–76 Rahimi MN, Moutsanidis G (2022) A coupled total Lagrangian SPH-phase-field framework for modeling dynamic brittle fracture. In: Giuseppe B (ed) 2022 International SPHERIC work., number June. Catania, Italy. Istituto Nazionale di Geofisica e Vulcanologi. p 71–76
88.
go back to reference Shimizu Y, Khayyer A, Gotoh H (2022) An implicit SPH-based structure model for accurate fluid–structure interaction simulations with hourglass control scheme. Eur J Mech B Fluids 96:122–145MathSciNetMATH Shimizu Y, Khayyer A, Gotoh H (2022) An implicit SPH-based structure model for accurate fluid–structure interaction simulations with hourglass control scheme. Eur J Mech B Fluids 96:122–145MathSciNetMATH
89.
go back to reference Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021) A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Appl Math Model 94:242–271MathSciNetMATH Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021) A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Appl Math Model 94:242–271MathSciNetMATH
90.
go back to reference Diehl P, Lipton R, Wick T, Tyagi M (2022) A comparative review of peridynamics and phase-field models for engineering fracture mechanics. Comput Mech 69:1259–1293MathSciNetMATH Diehl P, Lipton R, Wick T, Tyagi M (2022) A comparative review of peridynamics and phase-field models for engineering fracture mechanics. Comput Mech 69:1259–1293MathSciNetMATH
91.
go back to reference Landau LD, Lifšic EM, Lifshitz EM, Kosevich AM, Pitaevskii LP (1986) Theory of elasticity, vol 7. Elsevier, Amsterdam Landau LD, Lifšic EM, Lifshitz EM, Kosevich AM, Pitaevskii LP (1986) Theory of elasticity, vol 7. Elsevier, Amsterdam
92.
go back to reference Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662MATH Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662MATH
93.
go back to reference Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetMATH Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetMATH
94.
go back to reference Antuono M, Marrone S, Colagrossi A, Bouscasse B (2015) Energy balance in the \(\delta\)-SPH scheme. Comput Methods Appl Mech Eng 289:209–226MathSciNetMATH Antuono M, Marrone S, Colagrossi A, Bouscasse B (2015) Energy balance in the \(\delta\)-SPH scheme. Comput Methods Appl Mech Eng 289:209–226MathSciNetMATH
95.
go back to reference Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J Comput Phys 332:236–256MathSciNetMATH Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J Comput Phys 332:236–256MathSciNetMATH
96.
go back to reference Lobovský L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluids Struct 48:407–434 Lobovský L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluids Struct 48:407–434
97.
go back to reference Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549MathSciNetMATH Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549MathSciNetMATH
98.
go back to reference Ting TS, Prakash M, Cleary PW, Thompson MC (2006) Simulation of high ||Reynolds number flow over a backward facing step using SPH. In: Stacey A, Blyth B, Shepherd J, Roberts AJ (eds) Proceedings of the 7th biennial engineering mathematics and applications conference, EMAC-2005, volume 47 of ANZIAM J. p C292–C309 Ting TS, Prakash M, Cleary PW, Thompson MC (2006) Simulation of high ||Reynolds number flow over a backward facing step using SPH. In: Stacey A, Blyth B, Shepherd J, Roberts AJ (eds) Proceedings of the 7th biennial engineering mathematics and applications conference, EMAC-2005, volume 47 of ANZIAM J. p C292–C309
99.
go back to reference Kim J, Kline SJ, Johnston JP (1980) Investigation of a reattaching turbulent shear layer: flow over a backward-facing step. J Fluids Eng 102(3):302–308 Kim J, Kline SJ, Johnston JP (1980) Investigation of a reattaching turbulent shear layer: flow over a backward-facing step. J Fluids Eng 102(3):302–308
100.
go back to reference Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81MathSciNetMATH Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81MathSciNetMATH
101.
go back to reference Stephen T, Sergius W-K et al (1959) Theory of plates and shells, vol 2. McGraw-hill, New York Stephen T, Sergius W-K et al (1959) Theory of plates and shells, vol 2. McGraw-hill, New York
102.
go back to reference Li Z, Leduc J, Nunez-Ramirez J, Combescure A, Marongiu JC (2015) A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion. Comput Mech 55(4):697–718MathSciNetMATH Li Z, Leduc J, Nunez-Ramirez J, Combescure A, Marongiu JC (2015) A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid–structure interaction problems with large interface motion. Comput Mech 55(4):697–718MathSciNetMATH
103.
go back to reference Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198(33):2785–2795MATH Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198(33):2785–2795MATH
104.
go back to reference Marti J, Idelsohn S, Limache A, Calvo N, D’Elía J (2006) A fully coupled particle method for quasi incompressible fluid-hypoelastic structure interactions. Mecánica Computacional 809–828 Marti J, Idelsohn S, Limache A, Calvo N, D’Elía J (2006) A fully coupled particle method for quasi incompressible fluid-hypoelastic structure interactions. Mecánica Computacional 809–828
Metadata
Title
An SPH-based FSI framework for phase-field modeling of brittle fracture under extreme hydrodynamic events
Authors
Mohammad Naqib Rahimi
Georgios Moutsanidis
Publication date
14-06-2023
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01857-0