Skip to main content
Top
Published in:

19-03-2024

Analog performance and linearity analysis of a p-type group IV-IV SiGe TFET

Authors: Sadhana Subhadarshini Mohanty, Pradipta Dutta, Jitendra Kumar Das, Sushanta Kumar Mohapatra, Shofiur Rahman, Reem Alanazi, Nadyah Alanazi, Abdullah N. Alodhayb

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work investigates a dual-material gate p-channel tunnel field-effect transistor (p-DMG-TFET) with a Si/SiGe heterojunction for achieving better performance in radio frequency (RF) applications. The results of the simulation demonstrate an improved on-current/off-current ratio (Ion/Ioff ~ 109) and minimum subthreshold swing (19 mV/decade) for the proposed Si0.7Ge0.3 hetero-TFET versus Si used as channel material. A comprehensive simulation study of both Si0.7Ge0.3 and Si channel devices is performed, and on the basis of their DC, analog/RF, and linearity performance, a direct comparison reveals improved results for digital and analog applications. Numerous characteristics of the proposed DMG-HJ-TFET, including IDS, CGS, CGD, gm, gds, fT, TGF, TFP, GFP, and GTFP, are investigated and compared with a Si channel device, in which the proposed device shows better performance for RF circuitry applications. RF figures of merit (FOMs) including gm2, gm3, VIP2, VIP3, 1-dB compression point, IIP3, and IMD3 are also investigated for the proposed structure, which again demonstrates better performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 20952110 (2010)CrossRef Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 20952110 (2010)CrossRef
2.
go back to reference Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373), 329337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373), 329337 (2011)CrossRef
3.
go back to reference Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron. Device 56, 456465 (2007) Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron. Device 56, 456465 (2007)
4.
go back to reference Wang, P.F., Hilsenbeck, K., Nirschl, T.: Complementary tunneling transistor for low power application. Solid-State Electron. 48(12), 22812286 (2004)CrossRef Wang, P.F., Hilsenbeck, K., Nirschl, T.: Complementary tunneling transistor for low power application. Solid-State Electron. 48(12), 22812286 (2004)CrossRef
5.
go back to reference Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743745 (2007) Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743745 (2007)
6.
go back to reference Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef
8.
go back to reference Bhuwalka, K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work-function engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)CrossRef Bhuwalka, K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work-function engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)CrossRef
9.
go back to reference Kim, S.H., Kam, H., Hu, C., Liu, T.J.K.: Germanium-source tunnel field effect transistors with record high ION/IOFF. In: Proc. VLSI Symp. Tech. Dig, pp. 178–179 (2009) Kim, S.H., Kam, H., Hu, C., Liu, T.J.K.: Germanium-source tunnel field effect transistors with record high ION/IOFF. In: Proc. VLSI Symp. Tech. Dig, pp. 178–179 (2009)
10.
go back to reference Toh, E., Wang, G.H., Chan, L., Sylvester, D., Heng, C., Samudra, G., Yeo, Y.: Device design and scalability of a double-gate tunneling field-effect transistor with silicon-germanium source. Jpn. J. Appl. Phys. 47(4), 2593–2597 (2008)CrossRef Toh, E., Wang, G.H., Chan, L., Sylvester, D., Heng, C., Samudra, G., Yeo, Y.: Device design and scalability of a double-gate tunneling field-effect transistor with silicon-germanium source. Jpn. J. Appl. Phys. 47(4), 2593–2597 (2008)CrossRef
11.
go back to reference Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
12.
go back to reference Chattopadhyay, A., Mallik, A.: Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans. Electron Devices 58(3), 677–683 (2011)CrossRef Chattopadhyay, A., Mallik, A.: Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans. Electron Devices 58(3), 677–683 (2011)CrossRef
13.
go back to reference Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef
14.
go back to reference Lattanzio, L., De Michielis, L., Ionescu, A.M.: Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33(2), 167–169 (2012)CrossRef Lattanzio, L., De Michielis, L., Ionescu, A.M.: Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33(2), 167–169 (2012)CrossRef
15.
go back to reference Mallik, A., Chattopadhyay, A., Omura, Y.: Gate-on-germanium source tunnel field-effect transistor enabling sub-0.5-V operation. Jpn. J. Appl. Phys. 53(10), 104201-1–104201-7 (2014)CrossRef Mallik, A., Chattopadhyay, A., Omura, Y.: Gate-on-germanium source tunnel field-effect transistor enabling sub-0.5-V operation. Jpn. J. Appl. Phys. 53(10), 104201-1–104201-7 (2014)CrossRef
16.
go back to reference Huang, J.Z., Long, P., Povolotskyi, M., Klimeck, G., Rodwell, M.J.W.: P-type tunnel FETs with triple heterojunctions. IEEE J. Electron. Devices Soc. 4(6), 410–415 (2016)CrossRef Huang, J.Z., Long, P., Povolotskyi, M., Klimeck, G., Rodwell, M.J.W.: P-type tunnel FETs with triple heterojunctions. IEEE J. Electron. Devices Soc. 4(6), 410–415 (2016)CrossRef
17.
go back to reference Long, P., Huang, J.Z., Povolotskyi, M., Klimeck, G., Rodwell, M.J.W.: High-current tunneling FETs with (110) orientation and a channel ¯ heterojunction. IEEE Electron Device Lett. 37(3), 345–348 (2016)CrossRef Long, P., Huang, J.Z., Povolotskyi, M., Klimeck, G., Rodwell, M.J.W.: High-current tunneling FETs with (110) orientation and a channel ¯ heterojunction. IEEE Electron Device Lett. 37(3), 345–348 (2016)CrossRef
18.
go back to reference Bhuwalka, K.K., Born, M., Schindler, M., Schmidt, M., Sulima, T., Eisele, I.: P-Channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn. J. Appl. Phys. 45(4B), 3106–3109 (2006)CrossRef Bhuwalka, K.K., Born, M., Schindler, M., Schmidt, M., Sulima, T., Eisele, I.: P-Channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn. J. Appl. Phys. 45(4B), 3106–3109 (2006)CrossRef
19.
go back to reference Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51(4), 572–578 (2007)CrossRef Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51(4), 572–578 (2007)CrossRef
20.
go back to reference Mayer, F., Royer, C.L., Damlencourt, J.F,. Romanjek, K., Andrieu, F., Tabone, C., Previtali, B., Deleonibus, S.: Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance. In: 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA (2008) Mayer, F., Royer, C.L., Damlencourt, J.F,. Romanjek, K., Andrieu, F., Tabone, C., Previtali, B., Deleonibus, S.: Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance. In: 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA (2008)
21.
go back to reference Royer, C.L., Mayer, F.: 10th Int. Conf. Ultimate Integration of Silicon, p. 53 (2009) Royer, C.L., Mayer, F.: 10th Int. Conf. Ultimate Integration of Silicon, p. 53 (2009)
22.
go back to reference Verhulst, A.S., Vandenberghe, W.G., Maex, K., De Gendt, S., Heyns, M.M., Groeseneken, G.: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29(12), 1398–1401 (2008)CrossRef Verhulst, A.S., Vandenberghe, W.G., Maex, K., De Gendt, S., Heyns, M.M., Groeseneken, G.: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29(12), 1398–1401 (2008)CrossRef
23.
go back to reference Virani, H.G., Rao, R.B., Kottantharayil, A.: Investigation of Novel Si/SiGe heterostructures and gate induced source tunneling for improvement of p-channel tunnel field-effect transistors. Jpn. J. Appl. Phys. 49(4S), 04DC12 (2010)CrossRef Virani, H.G., Rao, R.B., Kottantharayil, A.: Investigation of Novel Si/SiGe heterostructures and gate induced source tunneling for improvement of p-channel tunnel field-effect transistors. Jpn. J. Appl. Phys. 49(4S), 04DC12 (2010)CrossRef
24.
go back to reference Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef
25.
go back to reference Goyal, N., Chaturvedi, P., State, S., Road, L.: Graded silicongermanium channel tunnel field effect transistor (G-TFET), an approach to increase ION without compromising IOFF. In: 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, College Park, MD, USA Goyal, N., Chaturvedi, P., State, S., Road, L.: Graded silicongermanium channel tunnel field effect transistor (G-TFET), an approach to increase ION without compromising IOFF. In: 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, College Park, MD, USA
26.
go back to reference Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: theoretical investigation and analysis. Jpn. J. Appl. Phys. 48(6R), 064503 (2009)CrossRef Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: theoretical investigation and analysis. Jpn. J. Appl. Phys. 48(6R), 064503 (2009)CrossRef
27.
go back to reference Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and << 60mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting. IEEE, pp. 1–3 (2008) Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and << 60mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting. IEEE, pp. 1–3 (2008)
28.
go back to reference Liow, T.Y., Tan, K.M., Yeo, Y.C., Agarwal, A., Du, A., Tung, C.H., Balasubramanian, N.: Investigation of silicon-germanium fins fabricated using germanium condensation on vertical compliant structures. Appl. Phys. Lett. 87(26), 262104 (2005)CrossRef Liow, T.Y., Tan, K.M., Yeo, Y.C., Agarwal, A., Du, A., Tung, C.H., Balasubramanian, N.: Investigation of silicon-germanium fins fabricated using germanium condensation on vertical compliant structures. Appl. Phys. Lett. 87(26), 262104 (2005)CrossRef
29.
go back to reference Balakumar, S., Buddharaju, K.D., Tan, B., Rustagi, S.C., Singh, N., Kumar, R., Lo, G.Q., Tripathy, S., Kwong, D.L.: Germanium-rich SiGe nanowires formed through oxidation of patterned SiGe FINs on insulator. J. Electron. Mater. 38(3), 443–448 (2009)CrossRef Balakumar, S., Buddharaju, K.D., Tan, B., Rustagi, S.C., Singh, N., Kumar, R., Lo, G.Q., Tripathy, S., Kwong, D.L.: Germanium-rich SiGe nanowires formed through oxidation of patterned SiGe FINs on insulator. J. Electron. Mater. 38(3), 443–448 (2009)CrossRef
30.
go back to reference Tezuka, T., Sugiyama, N., Takagi, S.: Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction. Appl. Phys. Lett. 79(12), 1798–1800 (2001)CrossRef Tezuka, T., Sugiyama, N., Takagi, S.: Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction. Appl. Phys. Lett. 79(12), 1798–1800 (2001)CrossRef
31.
go back to reference Choudhury, S., Niranjan, N.K., Baishnab, K.L., Guha, K.: Design and simulation of P-TFET for improved ION/IOFF ratio and subthreshold slope using strained Si1−xGexchannelheterojunction. Microsys. Technol. 26(6), 1777–1782 (2020)CrossRef Choudhury, S., Niranjan, N.K., Baishnab, K.L., Guha, K.: Design and simulation of P-TFET for improved ION/IOFF ratio and subthreshold slope using strained Si1−xGexchannelheterojunction. Microsys. Technol. 26(6), 1777–1782 (2020)CrossRef
32.
go back to reference Virani, H.G., Kottantharavil, A.: Optimization of hetero junction n-channel tunnel FET with high-k spacers. In: 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6 (2009) Virani, H.G., Kottantharavil, A.: Optimization of hetero junction n-channel tunnel FET with high-k spacers. In: 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6 (2009)
33.
go back to reference Zhao, Q.T., Richter, S., Schulte-Braucks, C., et al.: Strained Si and SiGe nanowire tunnel FETs for logic and analog applications. IEEE J. Electron. Devices Soc. 3, 103–114 (2015)CrossRef Zhao, Q.T., Richter, S., Schulte-Braucks, C., et al.: Strained Si and SiGe nanowire tunnel FETs for logic and analog applications. IEEE J. Electron. Devices Soc. 3, 103–114 (2015)CrossRef
34.
go back to reference Ashburn, P.: SiGe Heterojunction Bipolar Transistors. John Wiley & Sons, Hoboken (2004) Ashburn, P.: SiGe Heterojunction Bipolar Transistors. John Wiley & Sons, Hoboken (2004)
35.
go back to reference Liu, P.W., Pan, J., Chang, T., Tsai, T.L., Chen, T., Liu, Y.C., Tsai, C.H., et al.: 18.3 superior current enhancement in SiGe channel p-MOSFETs fabricated on [110] surface. In: 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers. IEEE, pp. 148–149 (2006) Liu, P.W., Pan, J., Chang, T., Tsai, T.L., Chen, T., Liu, Y.C., Tsai, C.H., et al.: 18.3 superior current enhancement in SiGe channel p-MOSFETs fabricated on [110] surface. In: 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers. IEEE, pp. 148–149 (2006)
36.
go back to reference Goswami, R., Bhowmick, B.: Hetero-gate-dielectric gate-drain underlap nanoscale TFET with a p + Si1-xGex layer at source-channel tunnel junction. In: Proceeding IEEE International Conference on Green Computing Communication and Electrical Engineering ICGCCEE, (2014) Goswami, R., Bhowmick, B.: Hetero-gate-dielectric gate-drain underlap nanoscale TFET with a p + Si1-xGex layer at source-channel tunnel junction. In: Proceeding IEEE International Conference on Green Computing Communication and Electrical Engineering ICGCCEE, (2014)
37.
go back to reference Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61(6), 1936–1942 (2014)CrossRef Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61(6), 1936–1942 (2014)CrossRef
38.
go back to reference Mohanty, S.S., Dutta, P., Das, J.K.: A dual gate material tunnel field effect transistor model incorporating two-dimensional Poisson and Schrodinger wave equations. Int. J. Numer. Model. Electron. Netw. Devices Fields 35(1), e2933 (2022)CrossRef Mohanty, S.S., Dutta, P., Das, J.K.: A dual gate material tunnel field effect transistor model incorporating two-dimensional Poisson and Schrodinger wave equations. Int. J. Numer. Model. Electron. Netw. Devices Fields 35(1), e2933 (2022)CrossRef
39.
go back to reference Mallik, A., Chattopadhyay, A.: Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)CrossRef Mallik, A., Chattopadhyay, A.: Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)CrossRef
40.
go back to reference Akram, M.W., Ghosh, B.: Analog performance of double gate junctionless tunnel field effect transistor. J. Semicond. 35(7), 074001 (2014)CrossRef Akram, M.W., Ghosh, B.: Analog performance of double gate junctionless tunnel field effect transistor. J. Semicond. 35(7), 074001 (2014)CrossRef
41.
go back to reference Nigam, K., Pandey, S., Kondekar, P.N.: A barrier controlled charge plasma based TFET with gate engineering for ambipolar suppression and RF/linearity performance improvement. IEEE Trans. Electron Devices 64, 27512757 (2017)CrossRef Nigam, K., Pandey, S., Kondekar, P.N.: A barrier controlled charge plasma based TFET with gate engineering for ambipolar suppression and RF/linearity performance improvement. IEEE Trans. Electron Devices 64, 27512757 (2017)CrossRef
42.
go back to reference Kanungo, S., Chattopadhyay, S., Gupta, P.S., Sinha, K., Rahaman, H.: Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 63(6), 2589–2596 (2016)CrossRef Kanungo, S., Chattopadhyay, S., Gupta, P.S., Sinha, K., Rahaman, H.: Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 63(6), 2589–2596 (2016)CrossRef
43.
go back to reference Kondekar, P.N., Nigam, K., Pandey, S., Sharma, D.: Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans. Electron Devices 64(2), 412–418 (2017)CrossRef Kondekar, P.N., Nigam, K., Pandey, S., Sharma, D.: Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans. Electron Devices 64(2), 412–418 (2017)CrossRef
44.
go back to reference Pindoo, I.A., Sinha, S.K., Chander, S.: Improvement of electrical characteristics of SiGe source based tunnel FET device. SILICON 13, 3209–3215 (2021)CrossRef Pindoo, I.A., Sinha, S.K., Chander, S.: Improvement of electrical characteristics of SiGe source based tunnel FET device. SILICON 13, 3209–3215 (2021)CrossRef
45.
go back to reference Sentaurus Device User Guide. Synopsys, Inc., Mountain View, USA (2016) Sentaurus Device User Guide. Synopsys, Inc., Mountain View, USA (2016)
46.
go back to reference Hashemi, P., Ando, T.: High Mobility Materials for CMOS Applications, pp. 205–229. IBM Corporation, Yorktown Heights, NY, United States (2018)CrossRef Hashemi, P., Ando, T.: High Mobility Materials for CMOS Applications, pp. 205–229. IBM Corporation, Yorktown Heights, NY, United States (2018)CrossRef
47.
go back to reference Singh, G., Amin, S.I., Anand, S., Sarin, R.K.: Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct. 92, 143–156 (2016)CrossRef Singh, G., Amin, S.I., Anand, S., Sarin, R.K.: Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct. 92, 143–156 (2016)CrossRef
48.
go back to reference Priyadarshani, K.N., Singh, S., Naugarhiya, A.: Dual metal double gate Ge-Pocket TFET (DMG-DG-Ge-Pocket TFET) with hetero dielectric: DC & analog performance projections. SILICON 14(4), 1593–1604 (2022)CrossRef Priyadarshani, K.N., Singh, S., Naugarhiya, A.: Dual metal double gate Ge-Pocket TFET (DMG-DG-Ge-Pocket TFET) with hetero dielectric: DC & analog performance projections. SILICON 14(4), 1593–1604 (2022)CrossRef
49.
go back to reference Goswami, Y., Ghosh, B., Asthana, P.K.: Analog performance of Si junctionless tunnel field effect transistor and its improvisation using III–V semiconductor. RSC Adv. 4(21), 10761–10765 (2014)CrossRef Goswami, Y., Ghosh, B., Asthana, P.K.: Analog performance of Si junctionless tunnel field effect transistor and its improvisation using III–V semiconductor. RSC Adv. 4(21), 10761–10765 (2014)CrossRef
50.
go back to reference Sharma, D., Vishvakarma, S.K.: Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET. Microelectron. J. 46(8), 731–739 (2015)CrossRef Sharma, D., Vishvakarma, S.K.: Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET. Microelectron. J. 46(8), 731–739 (2015)CrossRef
51.
go back to reference Mohapatra, S., Pradhan, K., Sahu, P.: Temperature dependence inflection point in ultra-thin Si directly on insulator (SDOI) MOSFETs: an influence to key performance metrics. Superlattice Microstruct 78, 134–143 (2015)CrossRef Mohapatra, S., Pradhan, K., Sahu, P.: Temperature dependence inflection point in ultra-thin Si directly on insulator (SDOI) MOSFETs: an influence to key performance metrics. Superlattice Microstruct 78, 134–143 (2015)CrossRef
52.
go back to reference Ghosh, P., Bhowmick, B.: Effect of temperature on reliability issues of ferroelectric dopant segregated Schottky barrier tunnel field effect transistor (Fe DS-SBTFET). SILICON 12(5), 1137–1144 (2020)CrossRef Ghosh, P., Bhowmick, B.: Effect of temperature on reliability issues of ferroelectric dopant segregated Schottky barrier tunnel field effect transistor (Fe DS-SBTFET). SILICON 12(5), 1137–1144 (2020)CrossRef
53.
go back to reference Kumar, S.P., Agrawal, A., Chaujar, R., Gupta, R.S., Gupta, M.: Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor. Microelectron. Reliab. 51, 587–596 (2011)CrossRef Kumar, S.P., Agrawal, A., Chaujar, R., Gupta, R.S., Gupta, M.: Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor. Microelectron. Reliab. 51, 587–596 (2011)CrossRef
54.
go back to reference Kumar, S., Singh, K., Nigam, K., Tikkiwal, V.A., Chandan, B.V.: Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Appl. Phys. A 125(5), 1–8 (2019)CrossRef Kumar, S., Singh, K., Nigam, K., Tikkiwal, V.A., Chandan, B.V.: Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Appl. Phys. A 125(5), 1–8 (2019)CrossRef
55.
go back to reference Rogers, J., Plett, C.: Radio Frequency Integrated Circuit Design, pp. 28–32. Artech House, Norwood (2003) Rogers, J., Plett, C.: Radio Frequency Integrated Circuit Design, pp. 28–32. Artech House, Norwood (2003)
56.
go back to reference Razavi, B.: RF Microelectronics. Prentice Hall, Hoboken (1998) Razavi, B.: RF Microelectronics. Prentice Hall, Hoboken (1998)
57.
go back to reference Datta, E., Chattopadhyay, A., Mallik, A., Omura, Y.: Temperature dependence of analog performance, linearity, and harmonic distortion for a Ge-source tunnel FET. IEEE Trans. Electron Devices 67(3), 810–815 (2020)CrossRef Datta, E., Chattopadhyay, A., Mallik, A., Omura, Y.: Temperature dependence of analog performance, linearity, and harmonic distortion for a Ge-source tunnel FET. IEEE Trans. Electron Devices 67(3), 810–815 (2020)CrossRef
58.
go back to reference Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012)CrossRef Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012)CrossRef
59.
go back to reference Woerlee, P.H., Knitel, M.J., Langevelde, R.L., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., et al.: RF-CMOS performance trends. IEEE Trans. Electron. Devices 48(8), 1776–1782 (2001) Woerlee, P.H., Knitel, M.J., Langevelde, R.L., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., et al.: RF-CMOS performance trends. IEEE Trans. Electron. Devices 48(8), 1776–1782 (2001)
60.
go back to reference Saha, R., Bhowmick, B., Baishya, S.: Temperature effect on RF/analog and linearity parameters in DMG FinFET. Appl. Phys. A Mater. Sci. Process. 124(642) (2018) Saha, R., Bhowmick, B., Baishya, S.: Temperature effect on RF/analog and linearity parameters in DMG FinFET. Appl. Phys. A Mater. Sci. Process. 124(642) (2018)
61.
go back to reference Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16, 227234 (2016)CrossRef Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16, 227234 (2016)CrossRef
Metadata
Title
Analog performance and linearity analysis of a p-type group IV-IV SiGe TFET
Authors
Sadhana Subhadarshini Mohanty
Pradipta Dutta
Jitendra Kumar Das
Sushanta Kumar Mohapatra
Shofiur Rahman
Reem Alanazi
Nadyah Alanazi
Abdullah N. Alodhayb
Publication date
19-03-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02141-0