Skip to main content
Top
Published in:

18-01-2024

Analysis and codesign of electronic–photonic integrated circuit hardware accelerator for machine learning application

Authors: A. Mosses, P. M. Joe Prathap

Published in: Journal of Computational Electronics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Innovations in deep learning technology have recently focused on photonics as a computing medium. Integrating an electronic and photonic approach is the main focus of this work utilizing various photonic architectures for machine learning applications. The speed, power, and reduced footprint of these photonic hardware accelerators (HA) are expected to greatly enhance inference. In this work, we propose a hybrid design of an electronic and photonic integrated circuit (EPIC) hardware accelerator (EPICHA), an electronic–photonic framework that uses architecture-level integrations for better performance. The proposed EPICHA has a systematic structure of reconfigurable directional couplers (RDCs) to build a scalable, efficient machine learning accelerator for inference applications. In the simulation framework, the input and output layers of a fully integrated photonic neural network use the same integrated photodetector and RDC technology as the activation function. Our system only compromises on latency because of the electro–optical conversion process and the hand-off between the electronic and photonic domains. Insertion losses in photonic components have a small negative impact on accuracy when using more deep learning stages. Our proposed EPICHA utilizes coherent operation, and hence uses a single wavelength of λ = 1550 nm. We used the interoperability feature of the Ansys Lumerical MODE, DEVICE, and INTERCONNECT tools for component modeling in the photonic and electrical domain, and circuit-level simulation using S-parameters with MATLAB. The electronic component acts as the controller, which generates the required analog voltage control signals for each RDC present in the photonic processing engine. We employed MathWorks MATLAB 2022b for the classification of handwritten digits from the MNIST database; the proposed coherent EPICHA achieved accuracy of 94%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks, CVPR Workshop (2014). Gokhale, V., Jin, J., Dundar, A., Martini, B., Culurciello, E.: A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks, CVPR Workshop (2014).
2.
go back to reference Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y., Temam, O.: ShiDianNao: shifting vision processing closer to the sensor. In: International Symposium on Computer Architecture (ISCA), (2015) Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y., Temam, O.: ShiDianNao: shifting vision processing closer to the sensor. In: International Symposium on Computer Architecture (ISCA), (2015)
3.
go back to reference Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator design for deep convolutional neural networks. FPGA, (2015). Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator design for deep convolutional neural networks. FPGA, (2015).
4.
go back to reference Chen, Y.-H., Yang, T.-J., Emer, J., Sze, V.: Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices. IEEE J. Emerg. Sel. Top. Circuits Syst (JETCAS) 9(2), 292–308 (2019)ADSCrossRef Chen, Y.-H., Yang, T.-J., Emer, J., Sze, V.: Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices. IEEE J. Emerg. Sel. Top. Circuits Syst (JETCAS) 9(2), 292–308 (2019)ADSCrossRef
5.
go back to reference Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W., Dally, W.J.: SCNN: an accelerator for compressed-sparse convolutional neural networks. Int. Symp. Comput. Arch. (ISCA) (2017). Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W., Dally, W.J.: SCNN: an accelerator for compressed-sparse convolutional neural networks. Int. Symp. Comput. Arch. (ISCA) (2017).
6.
go back to reference Markidis, S., Der Chien, S.W., Laure, E., Peng, I. B., Vetter, J.S.: Nvidia tensor core programmability, performance & precision, pp. 522–531 (2018). Markidis, S., Der Chien, S.W., Laure, E., Peng, I. B., Vetter, J.S.: Nvidia tensor core programmability, performance & precision, pp. 522–531 (2018).
7.
go back to reference Sodani, A., Gramunt, R., Corbal, J., Kim, H.-S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.-C.: Knights landing: second-generation Intel Xeon Phi product. IEEE Micro 36(2), 3446 (2016)CrossRef Sodani, A., Gramunt, R., Corbal, J., Kim, H.-S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.-C.: Knights landing: second-generation Intel Xeon Phi product. IEEE Micro 36(2), 3446 (2016)CrossRef
8.
go back to reference Amravati, A., Nasir, S.B., Thangadurai, S., Yoon, I., Raychowdhury, A: A 55nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots, pp. 124126, 2018 Amravati, A., Nasir, S.B., Thangadurai, S., Yoon, I., Raychowdhury, A: A 55nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots, pp. 124126, 2018
9.
go back to reference Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A mixed-signal binarized convolutional-neural-network accelerator integrating dense weight storage and multiplication for reduced data movement, pp. 141–142 (2018) Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A mixed-signal binarized convolutional-neural-network accelerator integrating dense weight storage and multiplication for reduced data movement, pp. 141–142 (2018)
10.
go back to reference Amaravati, A., Nasir, S.B., Ting, J., Yoon, I., Raychowdhury, A.: A 55-nm, 1.00.4 v, 125-pj/mac time-domain mixed-signal neuromorphic accelerator with stochastic synapses for reinforcement learning in autonomous mobile robots. IEEE J. Solid-State Circuits 54(1), 75–87 (2018)ADSCrossRef Amaravati, A., Nasir, S.B., Ting, J., Yoon, I., Raychowdhury, A.: A 55-nm, 1.00.4 v, 125-pj/mac time-domain mixed-signal neuromorphic accelerator with stochastic synapses for reinforcement learning in autonomous mobile robots. IEEE J. Solid-State Circuits 54(1), 75–87 (2018)ADSCrossRef
11.
go back to reference Sunny, F.P., et al.: A survey on silicon photonics for deep learning. ACM J. Emerg. Technol. Comput. Syst. 17, 1–57 (2021)CrossRef Sunny, F.P., et al.: A survey on silicon photonics for deep learning. ACM J. Emerg. Technol. Comput. Syst. 17, 1–57 (2021)CrossRef
12.
go back to reference Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: a pipelined reram-based accelerator for deep learning. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 541552 (2017) Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: a pipelined reram-based accelerator for deep learning. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 541552 (2017)
13.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016) Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)
14.
go back to reference Marquez, B.A., Filipovich, M.J., Howard, E.R., Bangari, V., Guo, Z., Morison, H.D., De Lima, T.F., Tait, A.N., Prucnal, P.R., Shastri, B.J.: Silicon photonics for artificial intelligence applications. Photoniques 104, 40–44 (2020)ADSCrossRef Marquez, B.A., Filipovich, M.J., Howard, E.R., Bangari, V., Guo, Z., Morison, H.D., De Lima, T.F., Tait, A.N., Prucnal, P.R., Shastri, B.J.: Silicon photonics for artificial intelligence applications. Photoniques 104, 40–44 (2020)ADSCrossRef
15.
go back to reference Sunny, F.P., Mirza, A., Nikdast, M., Pasricha, S.: ROBIN: a robust optical binary neural network accelerator. ACM Trans. Embed. Comput. Syst. (TECS) 20, 1–24 (2021)CrossRef Sunny, F.P., Mirza, A., Nikdast, M., Pasricha, S.: ROBIN: a robust optical binary neural network accelerator. ACM Trans. Embed. Comput. Syst. (TECS) 20, 1–24 (2021)CrossRef
17.
go back to reference Bai, B., Shu, H., Wang, X., Zou, W.: Towards silicon photonic neural networks for artificial intelligence. Sci. China Inf. Sci. 63, 1–4 (2020)ADSCrossRef Bai, B., Shu, H., Wang, X., Zou, W.: Towards silicon photonic neural networks for artificial intelligence. Sci. China Inf. Sci. 63, 1–4 (2020)ADSCrossRef
18.
go back to reference Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1), 239255 (2010) Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1), 239255 (2010)
20.
go back to reference Rajendran, B., et al.: Low-power neuromorphic hardware for signal processing applications: A review of architectural and system-level design approaches. IEEE Signal Process. Mag. 36(6), 97–110 (2019)CrossRef Rajendran, B., et al.: Low-power neuromorphic hardware for signal processing applications: A review of architectural and system-level design approaches. IEEE Signal Process. Mag. 36(6), 97–110 (2019)CrossRef
22.
go back to reference Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in nlp, arXiv preprint arXiv:1906.02243, (2019) Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in nlp, arXiv preprint arXiv:​1906.​02243, (2019)
23.
go back to reference Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emissions of machine learning, arXiv preprint arXiv:1910.09700, (2019) Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emissions of machine learning, arXiv preprint arXiv:​1910.​09700, (2019)
24.
go back to reference De Marinis, L., Catania, A., Castoldi, P., Contestabile, G., Bruschi, P., Piotto, M., Andriolli, N.: A codesigned integrated photonic electronic neuron. IEEE J. Quantum Electron. 58, 1–10 (2022)CrossRef De Marinis, L., Catania, A., Castoldi, P., Contestabile, G., Bruschi, P., Piotto, M., Andriolli, N.: A codesigned integrated photonic electronic neuron. IEEE J. Quantum Electron. 58, 1–10 (2022)CrossRef
25.
go back to reference Mittal, S.: A survey of ReRAM-based architectures for processing in-memory and neural networks. Mach. Learn. Knowl. Extract. 1(1), 75–114 (2019)CrossRef Mittal, S.: A survey of ReRAM-based architectures for processing in-memory and neural networks. Mach. Learn. Knowl. Extract. 1(1), 75–114 (2019)CrossRef
26.
go back to reference Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S., Srikumar, V.: Isaac: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Comput. Arch. News 44(3), 1426 (2016) Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S., Srikumar, V.: Isaac: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Comput. Arch. News 44(3), 1426 (2016)
27.
go back to reference Thomas, A., Niehorster, S., Fabretti, S., Shepheard, N., Kuschel, O., Kupper, K., Wollschlager, J., Krzysteczko, P., Chicca, E.: Tunnel junction based memristors as artificial synapses. Front. Neurosci. Neurosci. 9, 241 (2015) Thomas, A., Niehorster, S., Fabretti, S., Shepheard, N., Kuschel, O., Kupper, K., Wollschlager, J., Krzysteczko, P., Chicca, E.: Tunnel junction based memristors as artificial synapses. Front. Neurosci. Neurosci. 9, 241 (2015)
28.
go back to reference Kalikka, J., Akola, J., Jones, R.O.: Simulation of crystallization in Ge2Sb2Te5: a memory effect in the canonical phase-change material. Phys. Rev. B 90, 184109 (2014)ADSCrossRef Kalikka, J., Akola, J., Jones, R.O.: Simulation of crystallization in Ge2Sb2Te5: a memory effect in the canonical phase-change material. Phys. Rev. B 90, 184109 (2014)ADSCrossRef
29.
go back to reference Morozovska, A.N., Kalinin, S.V., Yelisieiev, M.E., Yang, J., Ahmadi, M., Eliseev, E.A., Evans, D.R.: Dynamic control of ferroionic states in ferroelectric nanoparticles. Acta Mater. Mater. 237, 118–138 (2022) Morozovska, A.N., Kalinin, S.V., Yelisieiev, M.E., Yang, J., Ahmadi, M., Eliseev, E.A., Evans, D.R.: Dynamic control of ferroionic states in ferroelectric nanoparticles. Acta Mater. Mater. 237, 118–138 (2022)
30.
go back to reference Zheng, Y., Wu, Y., Li, K., Qiu, J., Han, G., Guo, Z., Luo, P., An, L., Liu, Z., Wang, L., et al.: Magnetic random access memory (MRAM). J. Nanosci. Nanotechnol. Nanosci. Nanotechnol. 7, 117–137 (2007)CrossRef Zheng, Y., Wu, Y., Li, K., Qiu, J., Han, G., Guo, Z., Luo, P., An, L., Liu, Z., Wang, L., et al.: Magnetic random access memory (MRAM). J. Nanosci. Nanotechnol. Nanosci. Nanotechnol. 7, 117–137 (2007)CrossRef
31.
go back to reference Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R.M., Burr, G.W.: Recent progress in analog memory-based accelerators for deep learning. J. Phys. D Appl. Phys. 51(28), 283001 (2018)CrossRef Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R.M., Burr, G.W.: Recent progress in analog memory-based accelerators for deep learning. J. Phys. D Appl. Phys. 51(28), 283001 (2018)CrossRef
32.
go back to reference Xu, B., Huang, Y., Fang, Y., Wang, Z., Yu, S., Xu, R.: Recent progress of neuromorphic computing based on silicon photonics: Electronic–Photonic co-design, device, and architecture. InPhotonics 9(10), 698 (2022)ADSCrossRef Xu, B., Huang, Y., Fang, Y., Wang, Z., Yu, S., Xu, R.: Recent progress of neuromorphic computing based on silicon photonics: Electronic–Photonic co-design, device, and architecture. InPhotonics 9(10), 698 (2022)ADSCrossRef
33.
go back to reference Waldrop, M.M.: The chips are down for Moore’s law. Nat. News 530(7589), 144 (2016)CrossRef Waldrop, M.M.: The chips are down for Moore’s law. Nat. News 530(7589), 144 (2016)CrossRef
34.
go back to reference Pasricha, S., Dutt, N.: On-Chip Communication Architectures, Morgan Kauffman, ISBN 978-0-12-373892-9, Apr (2008). Pasricha, S., Dutt, N.: On-Chip Communication Architectures, Morgan Kauffman, ISBN 978-0-12-373892-9, Apr (2008).
35.
go back to reference Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., Zhang, J., Song, W., Davila, N., Graves, C.E., Li, Z., Strachan, J.P., Lin, P., Wang, Z., Barnell, M., Wu, Q., Williams, R.S., Yang, J.J., Xia, Q.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 5259 (2018) Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., Zhang, J., Song, W., Davila, N., Graves, C.E., Li, Z., Strachan, J.P., Lin, P., Wang, Z., Barnell, M., Wu, Q., Williams, R.S., Yang, J.J., Xia, Q.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 5259 (2018)
36.
go back to reference Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W.: Fully hardware implemented memristor convolutional neural network. Nature 577, 641–646 (2020)ADSCrossRefPubMed Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W.: Fully hardware implemented memristor convolutional neural network. Nature 577, 641–646 (2020)ADSCrossRefPubMed
37.
go back to reference Feng, C., Gu, J., Zhu, H., Ying, Z., Zhao, Z., Pan, D.Z., Chen, R.T.: Silicon photonic subspace neural chip for hardware-efficient deep learning. arXiv preprint arXiv:2111.06705. (2021). Feng, C., Gu, J., Zhu, H., Ying, Z., Zhao, Z., Pan, D.Z., Chen, R.T.: Silicon photonic subspace neural chip for hardware-efficient deep learning. arXiv preprint arXiv:​2111.​06705. (2021).
39.
go back to reference Hamerly, R., Sludds, A., Bernstein, L., Prabhu, M., Roques-Carmes, C., Carolan, J., Yamamoto, Y., Soljacicť, M., Englund, D.: Towards large-scale photonic neural-network accelerators. In: 2019 IEEE International Electron Devices Meeting (IEDM), pp 22.8.122.8.4 (2019). https://doi.org/10.1109/IEDM19573.2019.8993624 Hamerly, R., Sludds, A., Bernstein, L., Prabhu, M., Roques-Carmes, C., Carolan, J., Yamamoto, Y., Soljacicť, M., Englund, D.: Towards large-scale photonic neural-network accelerators. In: 2019 IEEE International Electron Devices Meeting (IEDM), pp 22.8.122.8.4 (2019). https://​doi.​org/​10.​1109/​IEDM19573.​2019.​8993624
40.
go back to reference Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., Rose, G.S., Plank, J.S.: A survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv:1705. 06963 (2017) Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., Rose, G.S., Plank, J.S.: A survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv:1705. 06963 (2017)
42.
go back to reference Paolini, E., De Marinis, L., Cococcioni, M., Valcarenghi, L., Maggiani, L., Andriolli, N.: Photonic-aware neural networks. Neural Comput. Appl. 1–3 (2022). Paolini, E., De Marinis, L., Cococcioni, M., Valcarenghi, L., Maggiani, L., Andriolli, N.: Photonic-aware neural networks. Neural Comput. Appl. 1–3 (2022).
43.
go back to reference Ohno, S., Tang, R., Toprasertpong, K., Takagi, S., Takenaka, M.: Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics 9, 2614–2622 (2022)CrossRef Ohno, S., Tang, R., Toprasertpong, K., Takagi, S., Takenaka, M.: Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics 9, 2614–2622 (2022)CrossRef
44.
go back to reference Al-Qadasi, M.A., Chrostowski, L., Shastri, B.J., Shekhar, S.: Scaling up silicon photonic based accelerators: Challenges and opportunities. APL Photonics, 020902 (2022). Al-Qadasi, M.A., Chrostowski, L., Shastri, B.J., Shekhar, S.: Scaling up silicon photonic based accelerators: Challenges and opportunities. APL Photonics, 020902 (2022).
45.
go back to reference Mourgias-Alexandris, G., Moralis-Pegios, M., Tsakyridis, A., Simos, S., Dabos, G., Totovic, A., Passalis, N., Kirtas, M., Rutirawut, T., Gardes, F.Y., Tefas, A.: Noise-resilient and high-speed deep learning with coherent silicon photonics. Nat. Commun.Commun. 13, 1–7 (2022)ADS Mourgias-Alexandris, G., Moralis-Pegios, M., Tsakyridis, A., Simos, S., Dabos, G., Totovic, A., Passalis, N., Kirtas, M., Rutirawut, T., Gardes, F.Y., Tefas, A.: Noise-resilient and high-speed deep learning with coherent silicon photonics. Nat. Commun.Commun. 13, 1–7 (2022)ADS
46.
go back to reference Zhou, H., Dong, J., Cheng, J., Dong, W., Huang, C., Shen, Y., Zhang, Q., Gu, M., Qian, C., Chen, H., Ruan, Z.: Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 1–21 (2022)CrossRef Zhou, H., Dong, J., Cheng, J., Dong, W., Huang, C., Shen, Y., Zhang, Q., Gu, M., Qian, C., Chen, H., Ruan, Z.: Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 1–21 (2022)CrossRef
47.
go back to reference Sunny, F.P., Mirza, A., Nikdast, M.: High-performance deep learning acceleration with silicon photonics. In: Silicon Photonics for High-Performance Computing and Beyond 2021 Nov 16 (pp. 367–382). CRC Press (2021). Sunny, F.P., Mirza, A., Nikdast, M.: High-performance deep learning acceleration with silicon photonics. In: Silicon Photonics for High-Performance Computing and Beyond 2021 Nov 16 (pp. 367–382). CRC Press (2021).
49.
go back to reference Ali, M.M., Madhupriya, G., Indhumathi, R., Krishnamoorthy, P.: Performance enhancement of 8×8 dilated banyan network using crosstalk suppressed GMZI crossbar photonic switches. Photonic Netw. Commun. 42, 123–133 (2021)CrossRef Ali, M.M., Madhupriya, G., Indhumathi, R., Krishnamoorthy, P.: Performance enhancement of 8×8 dilated banyan network using crosstalk suppressed GMZI crossbar photonic switches. Photonic Netw. Commun. 42, 123–133 (2021)CrossRef
50.
go back to reference Mubarak Ali, M., Madhupriya, G., Indhumathi, R., Krishnamoorthy, P, Photonic processing core for reconfigurable electronic–photonic integrated circuit. In: Arunachalam, V., Sivasankaran, K. (eds.) Microelectronic Devices, Circuits and Systems. ICMDCS 2021. Communications in Computer and Information Science, vol. 1392. Springer, Singapore (2021) Mubarak Ali, M., Madhupriya, G., Indhumathi, R., Krishnamoorthy, P, Photonic processing core for reconfigurable electronic–photonic integrated circuit. In: Arunachalam, V., Sivasankaran, K. (eds.) Microelectronic Devices, Circuits and Systems. ICMDCS 2021. Communications in Computer and Information Science, vol. 1392. Springer, Singapore (2021)
54.
go back to reference Wang, Y., Chen, Z., Hu, H.: Analysis of waveguides on lithium niobate thin films. Crystals 8(5), 191 (2018)CrossRef Wang, Y., Chen, Z., Hu, H.: Analysis of waveguides on lithium niobate thin films. Crystals 8(5), 191 (2018)CrossRef
Metadata
Title
Analysis and codesign of electronic–photonic integrated circuit hardware accelerator for machine learning application
Authors
A. Mosses
P. M. Joe Prathap
Publication date
18-01-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02123-8