Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2021

11-03-2021 | Research Article-Electrical Engineering

Analysis of A Transformerless Single Switch High Gain DC–DC Converter for Renewable Energy Systems

Author: Ahmed Allehyani

Published in: Arabian Journal for Science and Engineering | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new transformerless single switch high gain dc–dc converter for renewable energy systems is proposed in this paper. The proposed converter solves two main problems: the low voltage produced by Photovoltaic (PV) solar panels and the discontinuous input current caused by the switching power supplies by stepping up the voltage of the PV panel and providing a continuous input current, respectively. The proposed converter is derived by adding a switched capacitor/inductor cell and a voltage multiplier stage to the traditional boost converter. The advantages of the converter are: high voltage conversion ratio, reduced voltage stress on the active switch and diodes, reduced gate driver requirements due to using only one switch and continuous input current to increase the life time of the solar PV panel. A detailed analysis of the operating principal in the continuous conduction mode, boundary conduction mode, discontinuous conduction mode, design consideration, nonideality of the converter is discussed. A laboratory prototype is built to verify the performance of the converter. The prototype is tested with different output powers (50–150 W) with an input voltage of 20 V and a duty cycle of 50%. The proposed converter succeeds in stepping the 20 V up to 200 V while providing a continuous input current at a 96% efficiency when the output load draws 100 W.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B.: Step-Up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143–9178 (2017)CrossRef Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B.: Step-Up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143–9178 (2017)CrossRef
2.
go back to reference Kanathipan, K.; Emamalipour, R.; Lam, J.: A single-switch high-gain PV microconverter with low-switch-voltage-to-high-voltage-bus ratio. IEEE Trans. Power Electron. 35(9), 9532–9542 (2020)CrossRef Kanathipan, K.; Emamalipour, R.; Lam, J.: A single-switch high-gain PV microconverter with low-switch-voltage-to-high-voltage-bus ratio. IEEE Trans. Power Electron. 35(9), 9532–9542 (2020)CrossRef
3.
go back to reference Salvador, M.A.; Lazzarin, T.B.; Coelho, R.F.: High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans. Ind. Electron. 65(7), 5644–5654 (2018)CrossRef Salvador, M.A.; Lazzarin, T.B.; Coelho, R.F.: High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans. Ind. Electron. 65(7), 5644–5654 (2018)CrossRef
4.
go back to reference Lakshmi, M.; Hemamalini, S.: Nonisolated high gain DC–DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65(2), 1205–1212 (2018)CrossRef Lakshmi, M.; Hemamalini, S.: Nonisolated high gain DC–DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65(2), 1205–1212 (2018)CrossRef
5.
go back to reference Fardoun, A.A.; Ismail, E.H.: Ultra step-up DC–DC converter with reduced switch stress. IEEE Trans. Ind. Appl. 46(5), 2025–2034 (2010)CrossRef Fardoun, A.A.; Ismail, E.H.: Ultra step-up DC–DC converter with reduced switch stress. IEEE Trans. Ind. Appl. 46(5), 2025–2034 (2010)CrossRef
6.
go back to reference Middlebrook, R.D.: A continuous model for the tapped-inductor boost converter. In: 1975 IEEE Power Electronics Specialists Conference, pp. 63–79 (1975) Middlebrook, R.D.: A continuous model for the tapped-inductor boost converter. In: 1975 IEEE Power Electronics Specialists Conference, pp. 63–79 (1975)
7.
go back to reference Mirzaee, A.; Moghani, J.S.: Coupled inductor-based high voltage gain DC–DC converter for renewable energy applications. IEEE Trans. Power Electron. 35(7), 7045–7057 (2020)CrossRef Mirzaee, A.; Moghani, J.S.: Coupled inductor-based high voltage gain DC–DC converter for renewable energy applications. IEEE Trans. Power Electron. 35(7), 7045–7057 (2020)CrossRef
8.
go back to reference Samuel, V.J.; Keerthi, G.; Mahalingam, P.: Coupled inductor-based DC–DC converter with high voltage conversion ratio and smooth input current. IET Power Electron. 13(4), 733–743 (2020)CrossRef Samuel, V.J.; Keerthi, G.; Mahalingam, P.: Coupled inductor-based DC–DC converter with high voltage conversion ratio and smooth input current. IET Power Electron. 13(4), 733–743 (2020)CrossRef
9.
go back to reference Alghaythi, M.L.; O’Connell, R.M.; Islam, N.E.; Khan, M.M.S.; Guerrero, J.M.: A high step-up interleaved DC–DC converter with voltage multiplier and coupled inductors for renewable energy systems. IEEE Access 8, 123165–123174 (2020)CrossRef Alghaythi, M.L.; O’Connell, R.M.; Islam, N.E.; Khan, M.M.S.; Guerrero, J.M.: A high step-up interleaved DC–DC converter with voltage multiplier and coupled inductors for renewable energy systems. IEEE Access 8, 123165–123174 (2020)CrossRef
10.
go back to reference Elsayad, N.; Moradisizkoohi, H.; Mohammed, O.A.: A single-switch transformerless DC–DC converter with universal input voltage for fuel cell vehicles: analysis and design. IEEE Trans. Veh. Technol. 68(5), 4537–4549 (2019)CrossRef Elsayad, N.; Moradisizkoohi, H.; Mohammed, O.A.: A single-switch transformerless DC–DC converter with universal input voltage for fuel cell vehicles: analysis and design. IEEE Trans. Veh. Technol. 68(5), 4537–4549 (2019)CrossRef
11.
go back to reference Fan, X.; Sun, H.; Yuan, Z.; Li, Z.; Shi, R.; Ghadimi, N.: High voltage gain DC/DC converter using coupled inductor and VM techniques. IEEE Access 8, 131975–131987 (2020)CrossRef Fan, X.; Sun, H.; Yuan, Z.; Li, Z.; Shi, R.; Ghadimi, N.: High voltage gain DC/DC converter using coupled inductor and VM techniques. IEEE Access 8, 131975–131987 (2020)CrossRef
12.
go back to reference Wu, B.; Li, S.; Liu, Y.; Smedley, K.M.: A new hybrid boosting converter for renewable energy applications. IEEE Trans. Power Electron. 31(2), 1203–1215 (2016)CrossRef Wu, B.; Li, S.; Liu, Y.; Smedley, K.M.: A new hybrid boosting converter for renewable energy applications. IEEE Trans. Power Electron. 31(2), 1203–1215 (2016)CrossRef
13.
go back to reference Rosas-Caro, J.C.; Ramirez, J.M.; Peng, F.Z.; Valderrabano, A.: A DC–DC multilevel boost converter. IET Power Electron. 3(1), 129–137 (2010)CrossRef Rosas-Caro, J.C.; Ramirez, J.M.; Peng, F.Z.; Valderrabano, A.: A DC–DC multilevel boost converter. IET Power Electron. 3(1), 129–137 (2010)CrossRef
14.
go back to reference Chen, M.; Li, K.; Hu, J.; Ioinovici, A.: Generation of a family of very high DC gain power electronics circuits based on switched-capacitor-inductor cells starting from a simple graph. IEEE Trans. Circuits Syst. I Regul. Pap. 63(12), 2381–2392 (2016)CrossRef Chen, M.; Li, K.; Hu, J.; Ioinovici, A.: Generation of a family of very high DC gain power electronics circuits based on switched-capacitor-inductor cells starting from a simple graph. IEEE Trans. Circuits Syst. I Regul. Pap. 63(12), 2381–2392 (2016)CrossRef
15.
go back to reference Tang, Y.; Fu, D.; Wang, T.; Xu, Z.: Hybrid switched-inductor converters for high step-up conversion. IEEE Trans. Industr. Electron. 62(3), 1480–1490 (2015)CrossRef Tang, Y.; Fu, D.; Wang, T.; Xu, Z.: Hybrid switched-inductor converters for high step-up conversion. IEEE Trans. Industr. Electron. 62(3), 1480–1490 (2015)CrossRef
16.
go back to reference Maalandish, M.; Hosseini, S.H.; Ghasemzadeh, S.; Babaei, E.; Alishah, R.S.; Jalilzadeh, T.: Six-phase interleaved boost dc/dc converter with high-voltage gain and reduced voltage stress. IET Power Electron. 10(14), 1904–1914 (2017)CrossRef Maalandish, M.; Hosseini, S.H.; Ghasemzadeh, S.; Babaei, E.; Alishah, R.S.; Jalilzadeh, T.: Six-phase interleaved boost dc/dc converter with high-voltage gain and reduced voltage stress. IET Power Electron. 10(14), 1904–1914 (2017)CrossRef
17.
go back to reference Duong, M.-K.N.T.-D.; Tran, T.-T.; Lim, Y.-C.; Choi, J.-H.: Transformerless high step-up DC–DC converters with switched-capacitor network. Electronics 8(12), 1420 (2019)CrossRef Duong, M.-K.N.T.-D.; Tran, T.-T.; Lim, Y.-C.; Choi, J.-H.: Transformerless high step-up DC–DC converters with switched-capacitor network. Electronics 8(12), 1420 (2019)CrossRef
18.
go back to reference Alhuwaishel, F.; Allehyani, A.; Al-Obaidi, S.; Enjeti, P.: A new medium voltage DC collection grid for large scale PV power plants with SiC devices. In: 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–8 (2018) Alhuwaishel, F.; Allehyani, A.; Al-Obaidi, S.; Enjeti, P.: A new medium voltage DC collection grid for large scale PV power plants with SiC devices. In: 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–8 (2018)
19.
go back to reference Allehyani, A.: A voltage multiplier medium voltage DC collection (MVDC) grid using SiC devices for two large PV plants. In: 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), pp. P.1–P.8 (2019) Allehyani, A.: A voltage multiplier medium voltage DC collection (MVDC) grid using SiC devices for two large PV plants. In: 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), pp. P.1–P.8 (2019)
20.
go back to reference Allehyani, A.; Enjeti, P.: A new modular micro-inverter with sinusoidal output voltage using GaN switches for PV modules. In: 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–6 (2018) Allehyani, A.; Enjeti, P.: A new modular micro-inverter with sinusoidal output voltage using GaN switches for PV modules. In: 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–6 (2018)
21.
go back to reference Saravanan, S.; Babu, N.R.: Design and development of single switch high step-up DC–DC converter. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 855–863 (2018)CrossRef Saravanan, S.; Babu, N.R.: Design and development of single switch high step-up DC–DC converter. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 855–863 (2018)CrossRef
Metadata
Title
Analysis of A Transformerless Single Switch High Gain DC–DC Converter for Renewable Energy Systems
Author
Ahmed Allehyani
Publication date
11-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05472-3

Other articles of this Issue 10/2021

Arabian Journal for Science and Engineering 10/2021 Go to the issue

Research Article-Electrical Engineering

Personalized Advanced Time Blood Glucose Level Prediction

Premium Partners