Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

26-10-2019

Analysis of Effect of Weight Variation on SNN Chip with PCM-Refresh Method

Journal:
Neural Processing Letters
Authors:
Akiyo Nomura, Megumi Ito, Atsuya Okazaki, Masatoshi Ishii, Sangbum Kim, Junka Okazawa, Kohji Hosokawa, Wilfried Haensch
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Neuromorphic computing using analog non-volatile memory (NVM) devices has been the subject of various studies due to its potential ability to achieve extremely low power consumption less than that of traditional von Neumann architecture. However, using NVM devices, such as phase change memory (PCM) and resistive-RAM devices, presents various challenges, such as limitations in the number of conductance steps and device variability resulting from process variation and electro/thermo-dynamics. Limitations in the number of conductance steps and device variability could reduce the accuracy of neural network training. It is necessary to quantitatively analyze the effect of the number of conductance steps and synaptic device variability on the accuracy of neural network training and assess requirements for NVM devices to make NVM-based neuromorphic computing successful. We conducted the analysis using simulations focusing on a spiking neural network (SNN) based restricted Boltzmann machine (RBM) with PCM devices using the PCM-refresh method. The results of our quantitative simulation, which used the MNIST dataset, showed that having more than 500 conductance steps achieves comparable performance to that when there are more than 1000 conductance steps. We also found that less than 10% conductance update variation in the synaptic devices is required to achieve the comparable accuracy with the no variation case. These results can provide guidelines for designing and optimizing a synaptic device for realizing NVM-based neuromorphic computing.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article