Skip to main content
Top
Published in: Journal of Computational Electronics 3/2016

14-03-2016

Analysis of external quantum efficiency and conversion efficiency of thin crystalline silicon solar cells with textured front surface

Authors: Amira Bougoffa, Abdessalem Trabelsi, Abdelaziz Zouari, Essebti Dhahri

Published in: Journal of Computational Electronics | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study aims to develop a simple analytical model that simulates the effect of the front surface texturization on thin crystalline silicon solar cells performance. It provides an analytical solution to the complete set of equations needed to determine the effect of the texturization on the performance of an \(\hbox {n}^{++}/ \hbox {n}^{+}/\hbox {p}\) solar cell. The increase in external quantum efficiency (EQE), enhancement of conversion efficiency, contributions of the different cell regions to EQE, and effects of the physical parameters of each region were simulated and evaluated in comparison with \(\hbox {n}^{++}/ \hbox {n}^{+}/\hbox {p}\) flat solar cells. Overall, the findings reveal that, for the same physical parameters of the different regions of the solar cells, the textured cells have better EQE and better conversion efficiency than the flat ones. The cell conversion efficiency can be improved by up to 0.83 %. This enhancement can be attributed to the decrease of the front surface reflectance for short-wavelength range and the increase of the light path for long-wavelength range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Drummond, P., Kshirsagar, A., Ruzzyllo, J.: Characterization of near-surface electrical proprieties of multi-crystalline silicon wafers. Solid States Electron. 55, 29–36 (2011)CrossRef Drummond, P., Kshirsagar, A., Ruzzyllo, J.: Characterization of near-surface electrical proprieties of multi-crystalline silicon wafers. Solid States Electron. 55, 29–36 (2011)CrossRef
2.
go back to reference Rohatgi, A., Rai-Choudhury, P.: Design, fabrication, and analysis of 17–18- percent efficient surface-passivated silicon solar cells. IEEE Trans. Electron Device 31, 596–601 (1984)CrossRef Rohatgi, A., Rai-Choudhury, P.: Design, fabrication, and analysis of 17–18- percent efficient surface-passivated silicon solar cells. IEEE Trans. Electron Device 31, 596–601 (1984)CrossRef
3.
go back to reference Trabelsi, A., Krichen, M., Zouari, A.: AB Arab Simple analytical model and efficiency improvement of polysilicon solar cells with porous silicon at the backside. Microelectron. J. 42, 173–179 (2011)CrossRef Trabelsi, A., Krichen, M., Zouari, A.: AB Arab Simple analytical model and efficiency improvement of polysilicon solar cells with porous silicon at the backside. Microelectron. J. 42, 173–179 (2011)CrossRef
4.
go back to reference Fetehaa, M.Y., Eldallalb, G.M., Solimana, M.M.: Optimum design for bifacial solar cells. Renew. Energy 22, 269–274 (2001)CrossRef Fetehaa, M.Y., Eldallalb, G.M., Solimana, M.M.: Optimum design for bifacial solar cells. Renew. Energy 22, 269–274 (2001)CrossRef
5.
go back to reference Blakers, A.W., Wang, A., Milne, A.M., Zhao, J., Green, M.A.: 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)CrossRef Blakers, A.W., Wang, A., Milne, A.M., Zhao, J., Green, M.A.: 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989)CrossRef
6.
go back to reference Green, M.A.: The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. 17, 183–189 (2009)CrossRef Green, M.A.: The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. 17, 183–189 (2009)CrossRef
7.
go back to reference Aberle, A.G., Glunz, S.W., Stephens, A.W., Green, M.A.: High-efficiency silicon solar cells: Si/SiO2, interface parameters and their impact on device performance. Prog. Photovolt. 2, 265–273 (1994)CrossRef Aberle, A.G., Glunz, S.W., Stephens, A.W., Green, M.A.: High-efficiency silicon solar cells: Si/SiO2, interface parameters and their impact on device performance. Prog. Photovolt. 2, 265–273 (1994)CrossRef
8.
go back to reference Ho, J.J., Chen, C.Y., Huang, C.Y., Lee, W.J., Liou, W.R., Chang, C.C.: Ion-assisted sputtering deposition of antireflection film coating for flexible liquid-crystal display. Appl. Opt. 44, 6176–6180 (2005)CrossRef Ho, J.J., Chen, C.Y., Huang, C.Y., Lee, W.J., Liou, W.R., Chang, C.C.: Ion-assisted sputtering deposition of antireflection film coating for flexible liquid-crystal display. Appl. Opt. 44, 6176–6180 (2005)CrossRef
9.
go back to reference Cheng, Y.T., Ho, J.J., Lee, W.J., Tsai, S.Y., Lu, Y.A., Liou, J.J., Chang, S.H., Wang, K.L.: Investigation of low-cost surface processing techniques for large-size multicrystalline silicon solar cells. Int. J. Photoenergy. 1–6 (2010) Cheng, Y.T., Ho, J.J., Lee, W.J., Tsai, S.Y., Lu, Y.A., Liou, J.J., Chang, S.H., Wang, K.L.: Investigation of low-cost surface processing techniques for large-size multicrystalline silicon solar cells. Int. J. Photoenergy. 1–6 (2010)
10.
go back to reference Hsu, J.C., Lee, C.C.: Single- and dual-ion-beam sputter deposition of titanium oxide films. Appl. Opt. 37, 1171–1176 (1998)CrossRef Hsu, J.C., Lee, C.C.: Single- and dual-ion-beam sputter deposition of titanium oxide films. Appl. Opt. 37, 1171–1176 (1998)CrossRef
11.
go back to reference Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J.F., Chaumartin, A., Fave, A., Lemiti, M.: Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006)CrossRef Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J.F., Chaumartin, A., Fave, A., Lemiti, M.: Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006)CrossRef
12.
go back to reference Macdonald, D.H., Cuevas, A., Kerr, M.J., Samundsett, C., Ruby, D., Winderbaum, S., Leo, A.: Texturing industrial multicrystalline silicon solar cells. Sol. Energy. 76, 277–283 (2004)CrossRef Macdonald, D.H., Cuevas, A., Kerr, M.J., Samundsett, C., Ruby, D., Winderbaum, S., Leo, A.: Texturing industrial multicrystalline silicon solar cells. Sol. Energy. 76, 277–283 (2004)CrossRef
13.
go back to reference Inomata, Y., Fukui, K., Shirasawa, K.: Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. Sol. Energy Mater. Sol. Cells 48, 237–242 (1997)CrossRef Inomata, Y., Fukui, K., Shirasawa, K.: Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. Sol. Energy Mater. Sol. Cells 48, 237–242 (1997)CrossRef
14.
go back to reference Dobrzanski, L.A., Drygala, A.: Laser processing of multicrystalline silicon for texturization of solar cells. J. Mater. Process. Technol. 191, 228–231 (2007)CrossRef Dobrzanski, L.A., Drygala, A.: Laser processing of multicrystalline silicon for texturization of solar cells. J. Mater. Process. Technol. 191, 228–231 (2007)CrossRef
15.
go back to reference Shi, J., Xu, F., Zhou, P., Yang, J., Yang, Z., Chen, D., Yin, Y., Chen, D., Ma, Z.: Refined nano-textured surface coupled with \({\rm SiN}_{x}\) layer on the improved photovoltaic properties of mult-crystalline silicon solar cells. Solid States Electron. 85, 23–27 (2013)CrossRef Shi, J., Xu, F., Zhou, P., Yang, J., Yang, Z., Chen, D., Yin, Y., Chen, D., Ma, Z.: Refined nano-textured surface coupled with \({\rm SiN}_{x}\) layer on the improved photovoltaic properties of mult-crystalline silicon solar cells. Solid States Electron. 85, 23–27 (2013)CrossRef
16.
go back to reference Nishimoto, Y., Ishihara, T., Namba, K.: Investigation of acidic texturization for multicrystalline silicon solar cells. J. Electrochem. Soc. 146, 457–461 (1999)CrossRef Nishimoto, Y., Ishihara, T., Namba, K.: Investigation of acidic texturization for multicrystalline silicon solar cells. J. Electrochem. Soc. 146, 457–461 (1999)CrossRef
17.
go back to reference Ein-Eli, Y., Starosvetsky, D.: Silicon texturing in alkaline media conducted under extreme negative potentials. Electrochem. Solid State Lett. 6, C47–C50 (2003)CrossRef Ein-Eli, Y., Starosvetsky, D.: Silicon texturing in alkaline media conducted under extreme negative potentials. Electrochem. Solid State Lett. 6, C47–C50 (2003)CrossRef
18.
go back to reference Singh, P.K., Kumar, R., Lal, M., Singh, S.N., Das, B.K.: Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103–113 (2001)CrossRef Singh, P.K., Kumar, R., Lal, M., Singh, S.N., Das, B.K.: Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103–113 (2001)CrossRef
19.
go back to reference Palik, E.D., Glembocki, O.J., Heard Jr., I., Burno, P.S., Tenerz, L.: Etching roughness for (1 0 0) silicon surfaces in aqueous KOH. J. Appl. Phys. 70, 3291–3300 (1991)CrossRef Palik, E.D., Glembocki, O.J., Heard Jr., I., Burno, P.S., Tenerz, L.: Etching roughness for (1 0 0) silicon surfaces in aqueous KOH. J. Appl. Phys. 70, 3291–3300 (1991)CrossRef
20.
go back to reference Vu, Q.B., Stricker, D.A., Zavracky, P.M.: Surface characteristics of (1 0 0) silicon anisotropically etched in aqueous KOH. J. Electrochem. Soc. 143, 1372–1375 (1996)CrossRef Vu, Q.B., Stricker, D.A., Zavracky, P.M.: Surface characteristics of (1 0 0) silicon anisotropically etched in aqueous KOH. J. Electrochem. Soc. 143, 1372–1375 (1996)CrossRef
21.
go back to reference Restrepo, F., Backus, C.E.: On black solar cells on the tetrahedral texturing of a silicon surface. IEEE Trans. Electron Devices 23, 1193–1195 (1976)CrossRef Restrepo, F., Backus, C.E.: On black solar cells on the tetrahedral texturing of a silicon surface. IEEE Trans. Electron Devices 23, 1193–1195 (1976)CrossRef
22.
go back to reference Verlinden, P., Evrard, O., Mazy, E., Crahay, A.: The surface texturization of solar cells: a new method using V-grooves with controllable sidewall angles. Sol. Energy Mater. Sol. Cells 26, 71–78 (1992)CrossRef Verlinden, P., Evrard, O., Mazy, E., Crahay, A.: The surface texturization of solar cells: a new method using V-grooves with controllable sidewall angles. Sol. Energy Mater. Sol. Cells 26, 71–78 (1992)CrossRef
23.
go back to reference Chitre, S.R.: A high volume cost efficient production macrostructuring process. In: Proceedings of the 13th IEEE International Photovoltaic Specialist Conference, pp 152–154 (1978) Chitre, S.R.: A high volume cost efficient production macrostructuring process. In: Proceedings of the 13th IEEE International Photovoltaic Specialist Conference, pp 152–154 (1978)
24.
go back to reference King, D.L., Buck, M.E.: Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells. In: Proceedings of the 22nd IEEE International Photovoltaic Specialist Conference, pp. 303-308 (1991) King, D.L., Buck, M.E.: Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells. In: Proceedings of the 22nd IEEE International Photovoltaic Specialist Conference, pp. 303-308 (1991)
25.
go back to reference Smith, A.W., Rohatgi, A.: Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency. Sol. Energy Mater. Sol. Cells 29, 37–49 (1993)CrossRef Smith, A.W., Rohatgi, A.: Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency. Sol. Energy Mater. Sol. Cells 29, 37–49 (1993)CrossRef
26.
go back to reference Kulesza, G., Panek, P., Ziȩba, P.: Time efficient texturization of multicrystalline silicon in the \({\rm HF/HNO}_{3}\) solutions and its effect on optoelectronic parameters of solar cells. Arch. Civil Mech. Eng. 14, 595–601 (2014)CrossRef Kulesza, G., Panek, P., Ziȩba, P.: Time efficient texturization of multicrystalline silicon in the \({\rm HF/HNO}_{3}\) solutions and its effect on optoelectronic parameters of solar cells. Arch. Civil Mech. Eng. 14, 595–601 (2014)CrossRef
27.
go back to reference Xi, Z., Yana, D., Dan, W., Jun, C., Li, X., Que, D.: Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline. Renew. Energy. 29, 2101–2107 (2004)CrossRef Xi, Z., Yana, D., Dan, W., Jun, C., Li, X., Que, D.: Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline. Renew. Energy. 29, 2101–2107 (2004)CrossRef
28.
go back to reference Yang, W.J., Ma, Z.Q., Tang, X., Feng, C.B., Zhao, W.G., Shi, P.P.: Internal quantum efficiency for solar cells. Sol. Energy 82, 106–110 (2008)CrossRef Yang, W.J., Ma, Z.Q., Tang, X., Feng, C.B., Zhao, W.G., Shi, P.P.: Internal quantum efficiency for solar cells. Sol. Energy 82, 106–110 (2008)CrossRef
29.
go back to reference Zouari, A., Arab, A.B.: Effect of the front surface field on crystalline silicon efficiency. Renew. Energy 36, 1663–1670 (2011)CrossRef Zouari, A., Arab, A.B.: Effect of the front surface field on crystalline silicon efficiency. Renew. Energy 36, 1663–1670 (2011)CrossRef
30.
go back to reference Hauser, J.R., Littlejohn, M.A.: Approximations for accumulation and inversion space-charge layers in semiconductors. Solid State Electron. 11, 667–674 (1968)CrossRef Hauser, J.R., Littlejohn, M.A.: Approximations for accumulation and inversion space-charge layers in semiconductors. Solid State Electron. 11, 667–674 (1968)CrossRef
31.
go back to reference Del Alamo, J., Swanson, R.M.: The physics and modeling of heavily doped emitters. IEEE Trans. Electron Devices 31, 1878–1888 (1984)CrossRef Del Alamo, J., Swanson, R.M.: The physics and modeling of heavily doped emitters. IEEE Trans. Electron Devices 31, 1878–1888 (1984)CrossRef
32.
go back to reference Dai, X.M., Tang, Y.H.: A simple general analytical solution for the quantum efficiency of front-surface-field solar cells. Sol. Energy Mater. Sol. Cells 43, 363–376 (1996)CrossRef Dai, X.M., Tang, Y.H.: A simple general analytical solution for the quantum efficiency of front-surface-field solar cells. Sol. Energy Mater. Sol. Cells 43, 363–376 (1996)CrossRef
33.
go back to reference Zouari, A., Arab, A.B.: A simple formulation of the saturation current density in heavily doped emitters. Can. J. Phys. 81, 1109–1120 (2003)CrossRef Zouari, A., Arab, A.B.: A simple formulation of the saturation current density in heavily doped emitters. Can. J. Phys. 81, 1109–1120 (2003)CrossRef
34.
go back to reference Baker-Finch, S.C., McIntosh, K.R.: Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. 19, 406–416 (2011)CrossRef Baker-Finch, S.C., McIntosh, K.R.: Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. 19, 406–416 (2011)CrossRef
35.
go back to reference Brendel, R., Hirsch, M., Plieninger, R., Werner, J.J.H.: Quantum efficiency analysis of thin-layer silicon solar cell with back surface fields and optical confinement. IEEE Trans. Electron Devices 43, 1104–1112 (1996)CrossRef Brendel, R., Hirsch, M., Plieninger, R., Werner, J.J.H.: Quantum efficiency analysis of thin-layer silicon solar cell with back surface fields and optical confinement. IEEE Trans. Electron Devices 43, 1104–1112 (1996)CrossRef
36.
go back to reference Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)CrossRef Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)CrossRef
37.
go back to reference Trabelsi, A., Zouari, A.: Analytical model and photovoltaic parameters improvement of polysilicon solar cells with porous silicon emitter. Sol. Energy 107, 220–226 (2014)CrossRef Trabelsi, A., Zouari, A.: Analytical model and photovoltaic parameters improvement of polysilicon solar cells with porous silicon emitter. Sol. Energy 107, 220–226 (2014)CrossRef
38.
go back to reference Trabelsi, A.: Internal quantum efficiency improvement of polysilicon solar cells with porous silicon emitter. Renew. Energy 50, 441–448 (2013) Trabelsi, A.: Internal quantum efficiency improvement of polysilicon solar cells with porous silicon emitter. Renew. Energy 50, 441–448 (2013)
39.
go back to reference Zhao, J., Wang, A., Green, M.A., Ferrazza, F.: 19.8% efficient “Honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cell. Appl. Phys. Lett. 73, 1991–1993 (1998)CrossRef Zhao, J., Wang, A., Green, M.A., Ferrazza, F.: 19.8% efficient “Honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cell. Appl. Phys. Lett. 73, 1991–1993 (1998)CrossRef
Metadata
Title
Analysis of external quantum efficiency and conversion efficiency of thin crystalline silicon solar cells with textured front surface
Authors
Amira Bougoffa
Abdessalem Trabelsi
Abdelaziz Zouari
Essebti Dhahri
Publication date
14-03-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0814-5

Other articles of this Issue 3/2016

Journal of Computational Electronics 3/2016 Go to the issue