Skip to main content
Top

2019 | OriginalPaper | Chapter

Analysis of Finite Word-Length Effects in Fixed-Point Systems

Authors : D. Menard, G. Caffarena, J. A. Lopez, D. Novo, O. Sentieys

Published in: Handbook of Signal Processing Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Systems based on fixed-point arithmetic, when carefully designed, seem to behave as their infinite precision analogues. Most often, however, this is only a macroscopic impression: finite word-lengths inevitably approximate the reference behavior introducing quantization errors, and confine the macroscopic correspondence to a restricted range of input values. Understanding these differences is crucial to design optimized fixed-point implementations that will behave “as expected” upon deployment. Thus, in this chapter, we survey the main approaches proposed in literature to model the impact of finite precision in fixed-point systems. In particular, we focus on the rounding errors introduced after reducing the number of least-significant bits in signals and coefficients during the so-called quantization process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Ahmadi and M. Zwolinski. Symbolic noise analysis approach to computational hardware optimization. In IEEE/ACM Design Automation Conference, 2008. DAC 2008, pages 391–396, 2008. A. Ahmadi and M. Zwolinski. Symbolic noise analysis approach to computational hardware optimization. In IEEE/ACM Design Automation Conference, 2008. DAC 2008, pages 391–396, 2008.
2.
go back to reference G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.MATH G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.MATH
3.
go back to reference A. Banciu, E. Casseau, D. Menard, and T. Michel. Stochastic modeling for floating-point to fixed-point conversion. In IEEE International Workshop on Signal Processing Systems, (SIPS), Beirut, October 2011. A. Banciu, E. Casseau, D. Menard, and T. Michel. Stochastic modeling for floating-point to fixed-point conversion. In IEEE International Workshop on Signal Processing Systems, (SIPS), Beirut, October 2011.
4.
go back to reference P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R. Uribe. Automatic conversion of floating point matlab programs into fixed point fpga based hardware design. In Field-Programmable Custom Computing Machines (FCCM), pages 263–264, 2003. P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R. Uribe. Automatic conversion of floating point matlab programs into fixed point fpga based hardware design. In Field-Programmable Custom Computing Machines (FCCM), pages 263–264, 2003.
5.
go back to reference P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal, N. Tripathi, D. Zaretsky, R. Anderson, and J. Uribe. Overview of a compiler for synthesizing matlab programs onto fpgas. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(3):312–324, 2004.CrossRef P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal, N. Tripathi, D. Zaretsky, R. Anderson, and J. Uribe. Overview of a compiler for synthesizing matlab programs onto fpgas. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(3):312–324, 2004.CrossRef
6.
go back to reference C. Barnes, B. N. Tran, and S. Leung. On the Statistics of Fixed-Point Roundoff Error. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(3):595–606, June 1985.CrossRef C. Barnes, B. N. Tran, and S. Leung. On the Statistics of Fixed-Point Roundoff Error. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(3):595–606, June 1985.CrossRef
7.
go back to reference B. Barrois, K. Parashar, and O. Sentieys. Leveraging Power Spectral Density for Scalable System-Level Accuracy Evaluation. In IEEE/ACM Conference on Design Automation and Test in Europe (DATE), page 6, Dresden, Germany, Mar. 2016. B. Barrois, K. Parashar, and O. Sentieys. Leveraging Power Spectral Density for Scalable System-Level Accuracy Evaluation. In IEEE/ACM Conference on Design Automation and Test in Europe (DATE), page 6, Dresden, Germany, Mar. 2016.
8.
go back to reference P. Bauer and L.-J. Leclerc. A computer-aided test for the absence of limit cycles in fixed-point digital filters. IEEE Transactions on Signal Processing, 39(11):2400–2410, 1991.CrossRef P. Bauer and L.-J. Leclerc. A computer-aided test for the absence of limit cycles in fixed-point digital filters. IEEE Transactions on Signal Processing, 39(11):2400–2410, 1991.CrossRef
9.
go back to reference A. Benedetti and P. Perona. Bit-Width Optimization for Configurable DSPs by Multi-interval Analysis. In IEEE Asilomar Conf. on Signals, Systems and Computers, 2000. A. Benedetti and P. Perona. Bit-Width Optimization for Configurable DSPs by Multi-interval Analysis. In IEEE Asilomar Conf. on Signals, Systems and Computers, 2000.
11.
go back to reference F. Berens and N. Naser. Algorithm to System-on-Chip Design Flow that Leverages System Studio and SystemC 2.0.1. Synopsys Inc., march 2004. F. Berens and N. Naser. Algorithm to System-on-Chip Design Flow that Leverages System Studio and SystemC 2.0.1. Synopsys Inc., march 2004.
12.
go back to reference D. Boland and G. Constantinides. Bounding variable values and round-off effects using Handelman representations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(11):1691–1704, 2011.CrossRef D. Boland and G. Constantinides. Bounding variable values and round-off effects using Handelman representations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(11):1691–1704, 2011.CrossRef
13.
go back to reference D. Boland and G. Constantinides. A scalable precision analysis framework. IEEE Transactions on Multimedia, 15(2):242–256, 2013.CrossRef D. Boland and G. Constantinides. A scalable precision analysis framework. IEEE Transactions on Multimedia, 15(2):242–256, 2013.CrossRef
14.
go back to reference T. Bose and M. Chen. Overflow oscillations in state-space digital filters. IEEE Transaction on Circuits and Systems, 38(7):807–810, 1991.CrossRef T. Bose and M. Chen. Overflow oscillations in state-space digital filters. IEEE Transaction on Circuits and Systems, 38(7):807–810, 1991.CrossRef
15.
go back to reference T. Bose and M. Chen. Stability of digital filters implemented with two’s complement truncation quantization. IEEE Transaction on Signal Process., 40(1):24–31, 1992.CrossRef T. Bose and M. Chen. Stability of digital filters implemented with two’s complement truncation quantization. IEEE Transaction on Signal Process., 40(1):24–31, 1992.CrossRef
16.
go back to reference H. Butterweck, A. van Meer, and G. Verkroost. New second-order digital filter sections without limit cycles. IEEE Transactions on Circuits and Systems, 31(2):141–146, 1984.CrossRef H. Butterweck, A. van Meer, and G. Verkroost. New second-order digital filter sections without limit cycles. IEEE Transactions on Circuits and Systems, 31(2):141–146, 1984.CrossRef
17.
go back to reference M. Buttner. Elimination of limit cycles in digital filters with very low increase in the quantization noise. IEEE Transactions on Circuits and Systems, 24(6):300–304, 1977.CrossRef M. Buttner. Elimination of limit cycles in digital filters with very low increase in the quantization noise. IEEE Transactions on Circuits and Systems, 24(6):300–304, 1977.CrossRef
18.
go back to reference G. Caffarena, C. Carreras, J. Lopez, and A. Fernandez. SQNR Estimation of Fixed-Point DSP Algorithms. Int. J. on Advances in Signal Processing, 2010:1–11, 2010.MATH G. Caffarena, C. Carreras, J. Lopez, and A. Fernandez. SQNR Estimation of Fixed-Point DSP Algorithms. Int. J. on Advances in Signal Processing, 2010:1–11, 2010.MATH
19.
go back to reference J. Campo, F. Cruz-Roldan, and M. Utrilla-Manso. Tighter limit cycle bounds for digital filters. IEEE Signal Processing Letters, 13(3):149–152, 2006.CrossRef J. Campo, F. Cruz-Roldan, and M. Utrilla-Manso. Tighter limit cycle bounds for digital filters. IEEE Signal Processing Letters, 13(3):149–152, 2006.CrossRef
20.
go back to reference M. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie. A Metric for Automatic Word-Length Determination of Hardware Datapaths. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(10):2228–2231, October 2006.CrossRef M. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie. A Metric for Automatic Word-Length Determination of Hardware Datapaths. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(10):2228–2231, October 2006.CrossRef
21.
go back to reference M.-A. Cantin, Y. Savaria, and P. Lavoie. A comparison of automatic word length optimization procedures. In IEEE International Symposium on Circuits and Systems, volume 2, pages II–612–II–615 vol.2, 2002. M.-A. Cantin, Y. Savaria, and P. Lavoie. A comparison of automatic word length optimization procedures. In IEEE International Symposium on Circuits and Systems, volume 2, pages II–612–II–615 vol.2, 2002.
22.
go back to reference F. Catthoor, H. de Man, and J. Vandewalle. Simulated-annealing-based optimization of coefficient and data word-lengths in digital filters. International Journal of Circuit Theory and Applications, I:371–390, 1988.CrossRef F. Catthoor, H. de Man, and J. Vandewalle. Simulated-annealing-based optimization of coefficient and data word-lengths in digital filters. International Journal of Circuit Theory and Applications, I:371–390, 1988.CrossRef
23.
go back to reference M. Chang and S. Hauck. Precis: a usercentric word-length optimization tool. IEEE Design Test of Computers, 22(4):349–361, 2005.CrossRef M. Chang and S. Hauck. Precis: a usercentric word-length optimization tool. IEEE Design Test of Computers, 22(4):349–361, 2005.CrossRef
24.
go back to reference J.-M. Chesneaux, L.-S. Didier, and F. Rico. Fixed CADNA library. In Real Number Conference (RNC), pages 215–221, Lyon, France, September 2003. J.-M. Chesneaux, L.-S. Didier, and F. Rico. Fixed CADNA library. In Real Number Conference (RNC), pages 215–221, Lyon, France, September 2003.
25.
go back to reference T. Claasen and L. Kristiansson. Necessary and sufficient conditions for the absence of overflow phenomena in a second-order recursive digital filter. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(6):509–515, 1975.CrossRef T. Claasen and L. Kristiansson. Necessary and sufficient conditions for the absence of overflow phenomena in a second-order recursive digital filter. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(6):509–515, 1975.CrossRef
26.
go back to reference T. Claasen, W. Mecklenbrauer, and J. Peek. Second-order digital filter with only one magnitude-truncation quantizer and having practically no limit-cycles. Electronics Letters, 9(22):531–532, 1973.CrossRef T. Claasen, W. Mecklenbrauer, and J. Peek. Second-order digital filter with only one magnitude-truncation quantizer and having practically no limit-cycles. Electronics Letters, 9(22):531–532, 1973.CrossRef
27.
go back to reference T. Claasen, W. Mecklenbrauker, and J. Peek. Effects of quantization and overflow in recursive digital filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(6): 517–529, 1976.MathSciNetCrossRef T. Claasen, W. Mecklenbrauker, and J. Peek. Effects of quantization and overflow in recursive digital filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(6): 517–529, 1976.MathSciNetCrossRef
28.
go back to reference J. A. Clarke, G. A. Constantinides, and P. Y. K. Cheung. Word-length selection for power minimization via nonlinear optimization. ACM Transactions on Design Automation of Electronic Systems, 14(3): 1–28, 2009.CrossRef J. A. Clarke, G. A. Constantinides, and P. Y. K. Cheung. Word-length selection for power minimization via nonlinear optimization. ACM Transactions on Design Automation of Electronic Systems, 14(3): 1–28, 2009.CrossRef
29.
go back to reference G. Constantinides. High Level Synthesis and Wordlength Optimization of Digital Signal Processing Systems. PhD thesis, Electr. Electron. Eng., Univ. London, 2001. G. Constantinides. High Level Synthesis and Wordlength Optimization of Digital Signal Processing Systems. PhD thesis, Electr. Electron. Eng., Univ. London, 2001.
30.
go back to reference G. Constantinides, P. Cheung, and W. Luk. Truncation Noise in Fixed-Point SFGs. IEE Electronics Letters, 35(23):2012–2014, 1999.CrossRef G. Constantinides, P. Cheung, and W. Luk. Truncation Noise in Fixed-Point SFGs. IEE Electronics Letters, 35(23):2012–2014, 1999.CrossRef
31.
go back to reference G. Constantinides, P. Cheung, and W. Luk. Roundoff-noise shaping in filter design. In IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages 57–60, Geneva, May 2000. G. Constantinides, P. Cheung, and W. Luk. Roundoff-noise shaping in filter design. In IEEE International Symposium on Circuits and Systems (ISCAS), volume 4, pages 57–60, Geneva, May 2000.
32.
go back to reference G. Constantinides, P. Cheung, and W. Luk. Wordlength optimization for linear digital signal processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(10):1432– 1442, October 2003.CrossRef G. Constantinides, P. Cheung, and W. Luk. Wordlength optimization for linear digital signal processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(10):1432– 1442, October 2003.CrossRef
33.
go back to reference G. A. Constantinides. Word-length optimization for differentiable nonlinear systems. ACM Transactions on Design Automation of Electronic Systems, 11(1):26–43, 2006.CrossRef G. A. Constantinides. Word-length optimization for differentiable nonlinear systems. ACM Transactions on Design Automation of Electronic Systems, 11(1):26–43, 2006.CrossRef
34.
go back to reference G. A. Constantinides, P. Y. K. Cheung, and W. Luk. Wordlength Optimization for Linear Digital Signal Processing. IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems, 22(10):1432–1442, 2003.CrossRef G. A. Constantinides, P. Y. K. Cheung, and W. Luk. Wordlength Optimization for Linear Digital Signal Processing. IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems, 22(10):1432–1442, 2003.CrossRef
35.
go back to reference G. A. Constantinides and G. J. Woeginger. The complexity of multiple wordlength assignment. Applied Mathematics Letters, 15(2):137–140, 2002.MathSciNetCrossRef G. A. Constantinides and G. J. Woeginger. The complexity of multiple wordlength assignment. Applied Mathematics Letters, 15(2):137–140, 2002.MathSciNetCrossRef
36.
go back to reference M. Coors, H. Keding, O. Luthje, and H. Meyr. Fast Bit-True Simulation. In ACM/IEEE Design Automation Conference (DAC), pages 708–713, Las Vegas, june 2001. M. Coors, H. Keding, O. Luthje, and H. Meyr. Fast Bit-True Simulation. In ACM/IEEE Design Automation Conference (DAC), pages 708–713, Las Vegas, june 2001.
37.
go back to reference M. Coors, H. Keding, O. Luthje, and H. Meyr. Integer Code Generation For the TI TMS320C62x. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Sate Lake City, May 2001. M. Coors, H. Keding, O. Luthje, and H. Meyr. Integer Code Generation For the TI TMS320C62x. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Sate Lake City, May 2001.
38.
go back to reference L. D. Coster. Bit-True Simulation of Digital Signal Processing Applications. PhD thesis, KU Leuven, 1999. L. D. Coster. Bit-True Simulation of Digital Signal Processing Applications. PhD thesis, KU Leuven, 1999.
39.
go back to reference L. D. Coster, M. Ade, R. Lauwereins, and J. Peperstraete. Code Generation for Compiled Bit-True Simulation of DSP Applications. In IEEE International Symposium on System Synthesis (ISSS), pages 9–14, Hsinchu, December 1998. L. D. Coster, M. Ade, R. Lauwereins, and J. Peperstraete. Code Generation for Compiled Bit-True Simulation of DSP Applications. In IEEE International Symposium on System Synthesis (ISSS), pages 9–14, Hsinchu, December 1998.
40.
go back to reference Coware. Coware SPW. Technical report, Coware, 2010. Coware. Coware SPW. Technical report, Coware, 2010.
41.
go back to reference M. Daumas and G. Melquiond. Certification of bounds on expressions involving rounded operators. ACM Trans. Math. Softw., 37(1):2:1–2:20, Jan. 2010.MathSciNetCrossRef M. Daumas and G. Melquiond. Certification of bounds on expressions involving rounded operators. ACM Trans. Math. Softw., 37(1):2:1–2:20, Jan. 2010.MathSciNetCrossRef
42.
go back to reference F. de Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification of elementary functions using gappa. In Applied computing, SAC ’06, pages 1318–1322, New York, NY, USA, 2006. ACM. F. de Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification of elementary functions using gappa. In Applied computing, SAC ’06, pages 1318–1322, New York, NY, USA, 2006. ACM.
43.
go back to reference L. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and applications. Numerical Algorithms, 37(1):147–158, 2004.MathSciNetCrossRef L. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and applications. Numerical Algorithms, 37(1):147–158, 2004.MathSciNetCrossRef
44.
go back to reference G. Deest, T. Yuki, O. Sentieys, and S. Derrien. Toward scalable source level accuracy analysis for floating-point to fixed-point conversion. In IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’14, pages 726–733, Piscataway, NJ, USA, 2014. IEEE Press. G. Deest, T. Yuki, O. Sentieys, and S. Derrien. Toward scalable source level accuracy analysis for floating-point to fixed-point conversion. In IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’14, pages 726–733, Piscataway, NJ, USA, 2014. IEEE Press.
45.
go back to reference N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura. Minimization of fractional wordlength on fixed-point conversion for high-level synthesis. In Asia and South Pacific Design Automation Conference, 2004. Pages 80 – 85, 27-30 2004. N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura. Minimization of fractional wordlength on fixed-point conversion for high-level synthesis. In Asia and South Pacific Design Automation Conference, 2004. Pages 80 – 85, 27-30 2004.
46.
go back to reference P. Ebert, J. Mazo, and M. Taylor. Overflow oscillations in digital filters. Bell System Tech. J., 48:2999–3020, 1969.CrossRef P. Ebert, J. Mazo, and M. Taylor. Overflow oscillations in digital filters. Bell System Tech. J., 48:2999–3020, 1969.CrossRef
47.
go back to reference J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming Heterogeneity, the Ptolemy Approach. Proceedings of the IEEE, 91, 2003.CrossRef J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming Heterogeneity, the Ptolemy Approach. Proceedings of the IEEE, 91, 2003.CrossRef
48.
go back to reference K. Erickson and A. Michel. Stability analysis of fixed-point digital filters using computer generated Lyapunov functions- part i: Direct form and coupled form filters. IEEE Transactions on Circuits and Systems, 32(2):113–132, 1985.MathSciNetCrossRef K. Erickson and A. Michel. Stability analysis of fixed-point digital filters using computer generated Lyapunov functions- part i: Direct form and coupled form filters. IEEE Transactions on Circuits and Systems, 32(2):113–132, 1985.MathSciNetCrossRef
49.
go back to reference K. Erickson and A. Michel. Stability analysis of fixed-point digital filters using computer generated Lyapunov functions- part ii: Wave digital filters and lattice digital filters. IEEE Transactions on Circuits and Systems, 32(2):132–142, 1985.MathSciNetCrossRef K. Erickson and A. Michel. Stability analysis of fixed-point digital filters using computer generated Lyapunov functions- part ii: Wave digital filters and lattice digital filters. IEEE Transactions on Circuits and Systems, 32(2):132–142, 1985.MathSciNetCrossRef
50.
go back to reference L. Esteban, J. Lopez, E. Sedano, S. Hernandez-Montero, and M. Sanchez. Quantization analysis of the infrared interferometer of the tj-ii for its optimized fpga-based implementation. IEEE Transactions on Nuclear Science, page accepted, 2013. L. Esteban, J. Lopez, E. Sedano, S. Hernandez-Montero, and M. Sanchez. Quantization analysis of the infrared interferometer of the tj-ii for its optimized fpga-based implementation. IEEE Transactions on Nuclear Science, page accepted, 2013.
51.
go back to reference C. Fang, T. Chen, and R. Rutenbar. Lightweight Floating-Point Arithmetic: Case Study of Inverse Discrete Cosine Transform. EURASIP J. on Applied Signal Processing, 2002(2002):879–892, 2002.MATH C. Fang, T. Chen, and R. Rutenbar. Lightweight Floating-Point Arithmetic: Case Study of Inverse Discrete Cosine Transform. EURASIP J. on Applied Signal Processing, 2002(2002):879–892, 2002.MATH
52.
go back to reference C. Fang, T. Chen, and R. Rutenbar. Floating-point error analysis based on affine arithmetic. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2:561–564, 2003. C. Fang, T. Chen, and R. Rutenbar. Floating-point error analysis based on affine arithmetic. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2:561–564, 2003.
53.
go back to reference C. Fang, R. Rutenbar, and T. Chen. Fast, accurate static analysis for fixed-point finite-precision effects in dsp designs. In Int. Conf. on Computer-Aided Design, 2003 (ICCAD ’03)., pages 275–282, 2003. C. Fang, R. Rutenbar, and T. Chen. Fast, accurate static analysis for fixed-point finite-precision effects in dsp designs. In Int. Conf. on Computer-Aided Design, 2003 (ICCAD ’03)., pages 275–282, 2003.
54.
go back to reference A. Fettweis. Some principles of designing digital filters imitating classical filter structures. IEEE Transactions on Circuits and Systems, 18(2):314–316, 1971. A. Fettweis. Some principles of designing digital filters imitating classical filter structures. IEEE Transactions on Circuits and Systems, 18(2):314–316, 1971.
55.
go back to reference A. Fettweis. Wave digital filters: Theory and practice. Proceedings of the IEEE, 74:270–327, 1986.CrossRef A. Fettweis. Wave digital filters: Theory and practice. Proceedings of the IEEE, 74:270–327, 1986.CrossRef
56.
go back to reference P. Fiore. Efficient Approximate Wordlength Optimization. IEEE Transactions on Computers, 57(11):1561 –1570, November 2008.MathSciNetCrossRef P. Fiore. Efficient Approximate Wordlength Optimization. IEEE Transactions on Computers, 57(11):1561 –1570, November 2008.MathSciNetCrossRef
57.
go back to reference A. Gaffar, O. Mencer, and W. Luk. Unifying Bit-Width Optimisation for Fixed-Point and Floating-Point Designs. In IEEE Symp. on Field-Programmable Custom Computing Machines, pages 79–88, 2004. A. Gaffar, O. Mencer, and W. Luk. Unifying Bit-Width Optimisation for Fixed-Point and Floating-Point Designs. In IEEE Symp. on Field-Programmable Custom Computing Machines, pages 79–88, 2004.
58.
go back to reference A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi. Floating-point bitwidth analysis via automatic differentiation. In IEEE International Conference on Field-Programmable Technology, 2002. (FPT), pages 158–165, 2002. A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi. Floating-point bitwidth analysis via automatic differentiation. In IEEE International Conference on Field-Programmable Technology, 2002. (FPT), pages 158–165, 2002.
59.
go back to reference M. Gevers and G. Li. Parametrizations in control, estimation, and filtering problems : accuracy aspects. Communications and control engineering series. Springer-Verlag, London ; New York, 1993. Michel Gevers and Gang Li. M. Gevers and G. Li. Parametrizations in control, estimation, and filtering problems : accuracy aspects. Communications and control engineering series. Springer-Verlag, London ; New York, 1993. Michel Gevers and Gang Li.
60.
go back to reference D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.CrossRef D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.CrossRef
61.
go back to reference A. Gray and J. Markel. Digital lattice and ladder synthesis. IEEE Trans. Audio Electroacoust., 21:491–500, 1973.CrossRef A. Gray and J. Markel. Digital lattice and ladder synthesis. IEEE Trans. Audio Electroacoust., 21:491–500, 1973.CrossRef
62.
go back to reference T. Hilaire. Low-parametric-sensitivity realizations with relaxed L 2-dynamic-range-scaling constraints. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(7):590–594, 2009.CrossRef T. Hilaire. Low-parametric-sensitivity realizations with relaxed L 2-dynamic-range-scaling constraints. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(7):590–594, 2009.CrossRef
63.
go back to reference T. Hilaire and P. Chevrel. Sensitivity-based pole and input-output errors of linear filters as indicators of the implementation deterioration in fixed-point context. EURASIP Journal on Advances in Signal Processing, 2011(1):893760, 2011. T. Hilaire and P. Chevrel. Sensitivity-based pole and input-output errors of linear filters as indicators of the implementation deterioration in fixed-point context. EURASIP Journal on Advances in Signal Processing, 2011(1):893760, 2011.
64.
go back to reference T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite wordlength realizations. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(8):1765–1774, 2007.MathSciNetCrossRef T. Hilaire, P. Chevrel, and J. Whidborne. A unifying framework for finite wordlength realizations. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(8):1765–1774, 2007.MathSciNetCrossRef
65.
go back to reference T. Hilaire, D. Menard, and O. Sentieys. Bit Accurate Roundoff Noise Analysis of Fixed-point Linear Controllers. In IEEE International Conference on Computer-Aided Control Systems (CACSD), pages 607–612, September 2008. T. Hilaire, D. Menard, and O. Sentieys. Bit Accurate Roundoff Noise Analysis of Fixed-point Linear Controllers. In IEEE International Conference on Computer-Aided Control Systems (CACSD), pages 607–612, September 2008.
66.
go back to reference T. Hinamoto, K. Iwata, and W.-S. Lu. l 2-sensitivity minimization of one- and two- dimensional state-space digital filters subject to l 2-scaling constraints. IEEE Transactions on Signal Processing, 54(5):1804–1812, 2006.CrossRef T. Hinamoto, K. Iwata, and W.-S. Lu. l 2-sensitivity minimization of one- and two- dimensional state-space digital filters subject to l 2-scaling constraints. IEEE Transactions on Signal Processing, 54(5):1804–1812, 2006.CrossRef
67.
go back to reference T. Hinamoto, H. Ohnishi, and W.-S. Lu. Minimization of l 2-sensitivity for state-space digital filters subject to l 2-dynamic-range scaling constraints. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(10):641–645, 2005.CrossRef T. Hinamoto, H. Ohnishi, and W.-S. Lu. Minimization of l 2-sensitivity for state-space digital filters subject to l 2-dynamic-range scaling constraints. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(10):641–645, 2005.CrossRef
68.
go back to reference T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W.-S. Lu. Analysis and minimization of l 2-sensitivity for linear systems and two-dimensional state-space filters using general controllability and observability gramians. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(9):1279–1289, 2002.MathSciNetCrossRef T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng, and W.-S. Lu. Analysis and minimization of l 2-sensitivity for linear systems and two-dimensional state-space filters using general controllability and observability gramians. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(9):1279–1289, 2002.MathSciNetCrossRef
69.
go back to reference L. Jackson. Roundoff noise bounds derived from coefficient sensitivities for digital filters. IEEE Transactions on Circuits and Systems, 23(8):481–485, 1976.MathSciNetCrossRef L. Jackson. Roundoff noise bounds derived from coefficient sensitivities for digital filters. IEEE Transactions on Circuits and Systems, 23(8):481–485, 1976.MathSciNetCrossRef
70.
go back to reference L. Jackson. Limit cycles in state-space structures for digital filters. IEEE Transactions on Circuits and Systems, 26(1):67–68, 1979.CrossRef L. Jackson. Limit cycles in state-space structures for digital filters. IEEE Transactions on Circuits and Systems, 26(1):67–68, 1979.CrossRef
71.
go back to reference L. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers, Boston, 1986. by Leland B. Jackson. ill. ; 25 cm. Includes index. L. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers, Boston, 1986. by Leland B. Jackson. ill. ; 25 cm. Includes index.
72.
go back to reference E. Jury and B. Lee. The absolute stability of systems with many nonlinearities. Automat. Remote Contr., 26:943–961, 1965.MATH E. Jury and B. Lee. The absolute stability of systems with many nonlinearities. Automat. Remote Contr., 26:943–961, 1965.MATH
73.
go back to reference J. Kang and W. Sung. Fixed-Point C Compiler for TMS320C50 Digital Signal Processor. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Munich, April 1997. J. Kang and W. Sung. Fixed-Point C Compiler for TMS320C50 Digital Signal Processor. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Munich, April 1997.
74.
go back to reference J. Kauraniemi. Analysis of limit cycles in the direct form delta operator structure by computer-aided test. International Conference on Acoustics, Speech, and Signal Processing, 1997. 3:2177–2180 vol3, 1997. J. Kauraniemi. Analysis of limit cycles in the direct form delta operator structure by computer-aided test. International Conference on Acoustics, Speech, and Signal Processing, 1997. 3:2177–2180 vol3, 1997.
75.
go back to reference H. Keding. Pain Killers for the Fixed-Point Design Flow. Technical report, Synopsys, 2010. H. Keding. Pain Killers for the Fixed-Point Design Flow. Technical report, Synopsys, 2010.
76.
go back to reference H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A Fixed-Point Design and Simulation Environment. In Design, Automation and Test in Europe, pages 429–435, Paris, France, 1998. H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A Fixed-Point Design and Simulation Environment. In Design, Automation and Test in Europe, pages 429–435, Paris, France, 1998.
77.
go back to reference S. Kim, K.-I. Kum, and W. Sung. Fixed-point optimization utility for C and C++ based digital signal processing programs. IEEE Transactions on Circuits and Systems II - Analog and Digital Signal Processing, 45(11):1455 –1464, Nov 1998. S. Kim, K.-I. Kum, and W. Sung. Fixed-point optimization utility for C and C++ based digital signal processing programs. IEEE Transactions on Circuits and Systems II - Analog and Digital Signal Processing, 45(11):1455 –1464, Nov 1998.
78.
go back to reference S. Kim and W. Sung. A Floating-point to Fixed-point Assembly program Translator for the TMS 320C25. IEEE Transactions on Circuits and Systems, 41(11):730–739, Nov. 1994.MathSciNet S. Kim and W. Sung. A Floating-point to Fixed-point Assembly program Translator for the TMS 320C25. IEEE Transactions on Circuits and Systems, 41(11):730–739, Nov. 1994.MathSciNet
79.
go back to reference A. Kinsman and N. Nicolici. Bit-width allocation for hardware accelerators for scientific computing using sat-modulo theory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(3):405–413, 2010.CrossRef A. Kinsman and N. Nicolici. Bit-width allocation for hardware accelerators for scientific computing using sat-modulo theory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(3):405–413, 2010.CrossRef
80.
go back to reference A. Kinsman and N. Nicolici. Automated range and precision bit-width allocation for iterative computations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(9):1265–1278, 2011.CrossRef A. Kinsman and N. Nicolici. Automated range and precision bit-width allocation for iterative computations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(9):1265–1278, 2011.CrossRef
81.
go back to reference A. Kinsman and N. Nicolici. Computational vector-magnitude-based range determination for scientific abstract data types. IEEE Transactions on Computers, 60(11):1652–1663, 2011.MathSciNetCrossRef A. Kinsman and N. Nicolici. Computational vector-magnitude-based range determination for scientific abstract data types. IEEE Transactions on Computers, 60(11):1652–1663, 2011.MathSciNetCrossRef
82.
go back to reference K. Kum, J. Kang, and W. Sung. AUTOSCALER for C: An optimizing floating-point to integer C program converter for fixed-point digital signal processors. IEEE Transactions on Circuits and Systems II - Analog and Digital Signal Processing, 47(9):840–848, Sept. 2000.CrossRef K. Kum, J. Kang, and W. Sung. AUTOSCALER for C: An optimizing floating-point to integer C program converter for fixed-point digital signal processors. IEEE Transactions on Circuits and Systems II - Analog and Digital Signal Processing, 47(9):840–848, Sept. 2000.CrossRef
83.
go back to reference T. Laakso, P. Diniz, I. Hartimo, and J. Macedo, T.C. Elimination of zero-input and constant-input limit cycles in single-quantizer recursive filter structures. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(9):638–646, 1992.CrossRef T. Laakso, P. Diniz, I. Hartimo, and J. Macedo, T.C. Elimination of zero-input and constant-input limit cycles in single-quantizer recursive filter structures. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(9):638–646, 1992.CrossRef
84.
go back to reference D.-U. Lee, A. Gaffar, R. Cheung, W. Mencer, O. Luk, and G. Constantinides. Accuracy-Guaranteed Bit-Width Optimization. IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems, 25(10):1990–2000, 2006.CrossRef D.-U. Lee, A. Gaffar, R. Cheung, W. Mencer, O. Luk, and G. Constantinides. Accuracy-Guaranteed Bit-Width Optimization. IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems, 25(10):1990–2000, 2006.CrossRef
85.
go back to reference D.-U. Lee, A. Gaffar, O. Mencer, and W. Luk. Minibit: bit-width optimization via affine arithmetic. In Design Automation Conference, 2005., pages 837–840, 2005. D.-U. Lee, A. Gaffar, O. Mencer, and W. Luk. Minibit: bit-width optimization via affine arithmetic. In Design Automation Conference, 2005., pages 837–840, 2005.
86.
go back to reference D.-U. Lee and J. Villasenor. A bit-width optimization methodology for polynomial-based function evaluation. IEEE Transactions on Computers, 56(4):567–571, 2007.MathSciNetCrossRef D.-U. Lee and J. Villasenor. A bit-width optimization methodology for polynomial-based function evaluation. IEEE Transactions on Computers, 56(4):567–571, 2007.MathSciNetCrossRef
87.
go back to reference A. Lepschy, G. Mian, and U. Viaro. Stability analysis of second-order direct-form digital filters with two roundoff quantizers. IEEE Transaction on Circuits Syst., 33(8):824–826, 1986.CrossRef A. Lepschy, G. Mian, and U. Viaro. Stability analysis of second-order direct-form digital filters with two roundoff quantizers. IEEE Transaction on Circuits Syst., 33(8):824–826, 1986.CrossRef
88.
go back to reference G. Li, M. Gevers, and Y. Sun. Performance analysis of a new structure for digital filter implementation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(4):474–482, 2000.CrossRef G. Li, M. Gevers, and Y. Sun. Performance analysis of a new structure for digital filter implementation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(4):474–482, 2000.CrossRef
89.
go back to reference G. Li and Z. Zhao. On the generalized dfiit structure and its state-space realization in digital filter implementation. IEEE Transaction on Circuits and Systems I: Regular Papers, 51(4):769–778, 2004.CrossRef G. Li and Z. Zhao. On the generalized dfiit structure and its state-space realization in digital filter implementation. IEEE Transaction on Circuits and Systems I: Regular Papers, 51(4):769–778, 2004.CrossRef
90.
go back to reference J. Lopez. Evaluacion de los Efectos de Cuantificacion en las Estructuras de Filtros Digitales Utilizando Tecnicas de Cuantificacion Basadas en Extensiones de Intervalos. PhD thesis, Univ. Politecnica de Madrid, Madrid, 2004. J. Lopez. Evaluacion de los Efectos de Cuantificacion en las Estructuras de Filtros Digitales Utilizando Tecnicas de Cuantificacion Basadas en Extensiones de Intervalos. PhD thesis, Univ. Politecnica de Madrid, Madrid, 2004.
91.
go back to reference J. Lopez, G. Caffarena, and C. Carreras. Fast and accurate computation of the l 2-sensitivity in digital filter realizations. Technical report, Univ. Politecnica de Madrid, 2006. J. Lopez, G. Caffarena, and C. Carreras. Fast and accurate computation of the l 2-sensitivity in digital filter realizations. Technical report, Univ. Politecnica de Madrid, 2006.
92.
go back to reference J. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz. Analysis of limit cycles by means of affine arithmetic computer-aided tests. In 12th European Signal Processing Conference EUSIPCO’04, pages 991–994, Vienna (Austria), 2004. J. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz. Analysis of limit cycles by means of affine arithmetic computer-aided tests. In 12th European Signal Processing Conference EUSIPCO’04, pages 991–994, Vienna (Austria), 2004.
93.
go back to reference J. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz. Fast and accurate computation of the roundoff noise of linear time-invariant systems. IET Circuits, Devices and Systems, 2(4):393–408, August 2008.CrossRef J. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz. Fast and accurate computation of the roundoff noise of linear time-invariant systems. IET Circuits, Devices and Systems, 2(4):393–408, August 2008.CrossRef
94.
go back to reference J. Lopez, C. Carreras, G. Caffarena, and O. Nieto-Taladriz. Fast characterization of the noise bounds derived from coefficient and signal quantization. In International Symposium on Circuits and Systems (ISCAS ’03)., volume 4, pages IV–309–IV–312 vol4, 2003. J. Lopez, C. Carreras, G. Caffarena, and O. Nieto-Taladriz. Fast characterization of the noise bounds derived from coefficient and signal quantization. In International Symposium on Circuits and Systems (ISCAS ’03)., volume 4, pages IV–309–IV–312 vol4, 2003.
95.
go back to reference J. A. Lopez, C. Carreras, and O. Nieto-Taladriz. Improved interval-based characterization of fixed-point lti systems with feedback loops. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(11):1923–1933, 2007.CrossRef J. A. Lopez, C. Carreras, and O. Nieto-Taladriz. Improved interval-based characterization of fixed-point lti systems with feedback loops. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(11):1923–1933, 2007.CrossRef
96.
go back to reference Mathworks. Fixed-Point Blockset User’s Guide (ver. 2.0), 2001. Mathworks. Fixed-Point Blockset User’s Guide (ver. 2.0), 2001.
97.
go back to reference J. McClellan, C. Burrus, A. Oppenheim, T. Parks, R. Schafer, and H. Schuessler. Computer-Based Exercises for Signal Processing Using Matlab 5. Matlab Curriculum Series. Prentice Hall, New Jersey, 1998. J. McClellan, C. Burrus, A. Oppenheim, T. Parks, R. Schafer, and H. Schuessler. Computer-Based Exercises for Signal Processing Using Matlab 5. Matlab Curriculum Series. Prentice Hall, New Jersey, 1998.
98.
go back to reference D. Menard, D. Novo, R. Rocher, F. Catthoor, and O. Sentieys. Quantization Mode Opportunities in Fixed-Point System Design. In European Signal Processing Conference (EUSIPCO), pages 542–546, Aalborg, August 2010. D. Menard, D. Novo, R. Rocher, F. Catthoor, and O. Sentieys. Quantization Mode Opportunities in Fixed-Point System Design. In European Signal Processing Conference (EUSIPCO), pages 542–546, Aalborg, August 2010.
99.
go back to reference D. Menard, R. Rocher, P. Scalart, and O. Sentieys. SQNR Determination in Non-Linear and Non-Recursive Fixed-Point Systems. In European Signal Processing Conference, pages 1349–1352, 2004. D. Menard, R. Rocher, P. Scalart, and O. Sentieys. SQNR Determination in Non-Linear and Non-Recursive Fixed-Point Systems. In European Signal Processing Conference, pages 1349–1352, 2004.
100.
go back to reference D. Menard, R. Rocher, and O. Sentieys. Analytical Fixed-Point Accuracy Evaluation in Linear Time-Invariant Systems. IEEE Transactions on Circuits and Systems I: Regular Papers,, 55(1), November 2008. D. Menard, R. Rocher, and O. Sentieys. Analytical Fixed-Point Accuracy Evaluation in Linear Time-Invariant Systems. IEEE Transactions on Circuits and Systems I: Regular Papers,, 55(1), November 2008.
101.
go back to reference D. Menard and O. Sentieys. A methodology for evaluating the precision of fixed-point systems. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, May 2002. D. Menard and O. Sentieys. A methodology for evaluating the precision of fixed-point systems. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, May 2002.
102.
go back to reference D. Menard and O. Sentieys. Automatic Evaluation of the Accuracy of Fixed-point Algorithms. In Design, Automation and Test in Europe (DATE), Paris, march 2002. D. Menard and O. Sentieys. Automatic Evaluation of the Accuracy of Fixed-point Algorithms. In Design, Automation and Test in Europe (DATE), Paris, march 2002.
103.
go back to reference D. Menard, R. Serizel, R. Rocher, and O. Sentieys. Accuracy Constraint Determination in Fixed-Point System Design. EURASIP Journal on Embedded Systems, 2008:12, 2008. D. Menard, R. Serizel, R. Rocher, and O. Sentieys. Accuracy Constraint Determination in Fixed-Point System Design. EURASIP Journal on Embedded Systems, 2008:12, 2008.
104.
go back to reference Mentor Graphics. Algorithmic C Data Types. Mentor Graphics, v.1.3 edition, march 2008. Mentor Graphics. Algorithmic C Data Types. Mentor Graphics, v.1.3 edition, march 2008.
105.
go back to reference W. Mills, C. Mullis, and R. Roberts. Digital filter realizations without overflow oscillations. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(4):334–338, 1978.MathSciNetCrossRef W. Mills, C. Mullis, and R. Roberts. Digital filter realizations without overflow oscillations. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(4):334–338, 1978.MathSciNetCrossRef
106.
go back to reference S. K. Mitra. Digital signal processing laboratory using MATLAB. WCB/McGraw-Hill, Boston, 1999. Sanjit K. Kumar. ill. ; 24 cm. + 1 computer disk. System requirements for computer disk: IBM pc or compatible, or Macintosh power pc; Windows 3.11 or higher; MATLAB Version 5.2 or higher; Signal Processing Toolbox Version 4.2 or higher. S. K. Mitra. Digital signal processing laboratory using MATLAB. WCB/McGraw-Hill, Boston, 1999. Sanjit K. Kumar. ill. ; 24 cm. + 1 computer disk. System requirements for computer disk: IBM pc or compatible, or Macintosh power pc; Windows 3.11 or higher; MATLAB Version 5.2 or higher; Signal Processing Toolbox Version 4.2 or higher.
107.
go back to reference S. Mittal. A survey of techniques for approximate computing. ACM Computer Survey, 48(4):62:1–62:33, Mar. 2016. S. Mittal. A survey of techniques for approximate computing. ACM Computer Survey, 48(4):62:1–62:33, Mar. 2016.
108.
go back to reference A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. Precision and error analysis of matlab applications during automated hardware synthesis for fpgas. In Design, Automation and Test in Europe, 2001, pages 722–728, 2001. A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. Precision and error analysis of matlab applications during automated hardware synthesis for fpgas. In Design, Automation and Test in Europe, 2001, pages 722–728, 2001.
109.
go back to reference D. Novo, N. Farahpour, U. Ahmad, F. Catthoor, and P. Ienne. Energy efficient mimo processing: A case study of opportunistic run-time approximations. In Design, automation and test in Europe, pages 1–6. ACM, 2014. D. Novo, N. Farahpour, U. Ahmad, F. Catthoor, and P. Ienne. Energy efficient mimo processing: A case study of opportunistic run-time approximations. In Design, automation and test in Europe, pages 1–6. ACM, 2014.
110.
go back to reference A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1987.MATH A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1987.MATH
111.
go back to reference W. G. Osborne, J. Coutinho, R. C. C. Cheung, W. Luk, and O. Mencer. Instrumented multi-stage word-length optimization. In International Conference on Field-Programmable Technology, 2007. ICFPT 2007, pages 89–96, 2007. W. G. Osborne, J. Coutinho, R. C. C. Cheung, W. Luk, and O. Mencer. Instrumented multi-stage word-length optimization. In International Conference on Field-Programmable Technology, 2007. ICFPT 2007, pages 89–96, 2007.
112.
go back to reference Y. Pang, K. Radecka, and Z. Zilic. Optimization of imprecise circuits represented by taylor series and real-valued polynomials. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(8):1177–1190, 2010.CrossRef Y. Pang, K. Radecka, and Z. Zilic. Optimization of imprecise circuits represented by taylor series and real-valued polynomials. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(8):1177–1190, 2010.CrossRef
113.
go back to reference K. Parashar, D. Menard, R. Rocher, O. Sentieys, D. Novo, and F. Catthoor. Fast Performance Evaluation of Fixed-Point Systems with Un-Smooth Operators. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 11 2010. K. Parashar, D. Menard, R. Rocher, O. Sentieys, D. Novo, and F. Catthoor. Fast Performance Evaluation of Fixed-Point Systems with Un-Smooth Operators. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 11 2010.
114.
go back to reference K. Parashar, D. Menard, and O. Sentieys. Accelerated performance evaluation of fixed-point systems with un-smooth operations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(4):599–612, April 2014.CrossRef K. Parashar, D. Menard, and O. Sentieys. Accelerated performance evaluation of fixed-point systems with un-smooth operations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(4):599–612, April 2014.CrossRef
115.
go back to reference K. Parashar, R. Rocher, D. Menard, and O. Sentieys. Analytical Approach for Analyzing Quantization Noise Effects on Decision Operators. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 1554–1557, Dallas, march 2010. K. Parashar, R. Rocher, D. Menard, and O. Sentieys. Analytical Approach for Analyzing Quantization Noise Effects on Decision Operators. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 1554–1557, Dallas, march 2010.
116.
go back to reference K. K. Parhi. VLSI Digital Signal Processing Systems: Design and Implementation. Wiley, New York, 1999. Keshab K. Parhi. ill. ; 25 cm. “A Wiley-Interscience publication.”. K. K. Parhi. VLSI Digital Signal Processing Systems: Design and Implementation. Wiley, New York, 1999. Keshab K. Parhi. ill. ; 25 cm. “A Wiley-Interscience publication.”.
117.
go back to reference S. Parker and P. Girard. Correlated noise due to roundoff in fixed point digital filters. IEEE Transactions on Circuits and Systems, 23(4):204–211, 1976.CrossRef S. Parker and P. Girard. Correlated noise due to roundoff in fixed point digital filters. IEEE Transactions on Circuits and Systems, 23(4):204–211, 1976.CrossRef
118.
go back to reference K. Premaratne, E. Kulasekere, P. Bauer, and L.-J. Leclerc. An exhaustive search algorithm for checking limit cycle behavior of digital filters. IEEE Transactions on Signal Processing, 44(10):2405–2412, 1996.CrossRef K. Premaratne, E. Kulasekere, P. Bauer, and L.-J. Leclerc. An exhaustive search algorithm for checking limit cycle behavior of digital filters. IEEE Transactions on Signal Processing, 44(10):2405–2412, 1996.CrossRef
119.
go back to reference R. A. Roberts and C. T. Mullis. Digital Signal Processing. Addison-Wesley series in electrical engineering. Addison-Wesley, Reading, Mass., 1987. Richard A. Roberts, Clifford T. Mullis. ill. ; 24 cm. Includes index. R. A. Roberts and C. T. Mullis. Digital Signal Processing. Addison-Wesley series in electrical engineering. Addison-Wesley, Reading, Mass., 1987. Richard A. Roberts, Clifford T. Mullis. ill. ; 24 cm. Includes index.
120.
go back to reference R. Rocher, D. Menard, N. Herve, and O. Sentieys. Fixed-Point Configurable Hardware Components. EURASIP Journal on Embedded Systems, 2006:Article ID 23197, 13 pages, 2006. R. Rocher, D. Menard, N. Herve, and O. Sentieys. Fixed-Point Configurable Hardware Components. EURASIP Journal on Embedded Systems, 2006:Article ID 23197, 13 pages, 2006.
121.
go back to reference R. Rocher, D. Menard, P. Scalart, and O. Sentieys. Analytical accuracy evaluation of Fixed-Point Systems. In European Signal Processing Conference (EUSIPCO), Poznan, September 2007. R. Rocher, D. Menard, P. Scalart, and O. Sentieys. Analytical accuracy evaluation of Fixed-Point Systems. In European Signal Processing Conference (EUSIPCO), Poznan, September 2007.
122.
go back to reference R. Rocher, D. Menard, P. Scalart, and O. Sentieys. Analytical approach for numerical accuracy estimation of fixed-point systems based on smooth operations. IEEE Transactions on Circuits and Systems I: Regular Papers, PP(99):1 –14, 2012. R. Rocher, D. Menard, P. Scalart, and O. Sentieys. Analytical approach for numerical accuracy estimation of fixed-point systems based on smooth operations. IEEE Transactions on Circuits and Systems I: Regular Papers, PP(99):1 –14, 2012.
123.
go back to reference R. Rocher and P. Scalart. Noise probability density function in fixed-point systems based on smooth operators. In Conference on Design and Architectures for Signal and Image Processing (DASIP 2012), pages 1–8, Oct. 2012. R. Rocher and P. Scalart. Noise probability density function in fixed-point systems based on smooth operators. In Conference on Design and Architectures for Signal and Image Processing (DASIP 2012), pages 1–8, Oct. 2012.
124.
go back to reference O. Sarbishei and K. Radecka. On the fixed-point accuracy analysis and optimization of polynomial specifications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):831–844, 2013.CrossRef O. Sarbishei and K. Radecka. On the fixed-point accuracy analysis and optimization of polynomial specifications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):831–844, 2013.CrossRef
125.
go back to reference O. Sarbishei, K. Radecka, and Z. Zilic. Analytical optimization of bit-widths in fixed-point lti systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(3):343–355, 2012.CrossRef O. Sarbishei, K. Radecka, and Z. Zilic. Analytical optimization of bit-widths in fixed-point lti systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(3):343–355, 2012.CrossRef
126.
go back to reference C. Shi and R. Brodersen. A Perturbation Theory on Statistical Quantization Effects in Fixed-Point DSP with Non-Stationary Inputs. In IEEE Int. Conf. on Circuits and Systems, volume 3, pages 373–376 Vol.3, 2004. C. Shi and R. Brodersen. A Perturbation Theory on Statistical Quantization Effects in Fixed-Point DSP with Non-Stationary Inputs. In IEEE Int. Conf. on Circuits and Systems, volume 3, pages 373–376 Vol.3, 2004.
127.
go back to reference C. Shi and R. Brodersen. Floating-point to fixed-point conversion with decision errors due to quantization. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, May 2004. C. Shi and R. Brodersen. Floating-point to fixed-point conversion with decision errors due to quantization. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, May 2004.
128.
go back to reference V. Singh. An extension to jury-lee criterion for the stability analysis of fixed point digital filters designed with two’s complement arithmetic. IEEE Transactions on Circuits and Systems, 33(3):355, 1986.CrossRef V. Singh. An extension to jury-lee criterion for the stability analysis of fixed point digital filters designed with two’s complement arithmetic. IEEE Transactions on Circuits and Systems, 33(3):355, 1986.CrossRef
129.
go back to reference A. Sripad and D. L. Snyder. A Necessary and Sufficient Condition for Quantization Error to be Uniform and White. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(5):442–448, October 1977.CrossRef A. Sripad and D. L. Snyder. A Necessary and Sufficient Condition for Quantization Error to be Uniform and White. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(5):442–448, October 1977.CrossRef
130.
go back to reference M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application to silicon compilation. In SIGPLAN conference on Programming Language Design and Implementation, pages 108–120, 2000.CrossRef M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application to silicon compilation. In SIGPLAN conference on Programming Language Design and Implementation, pages 108–120, 2000.CrossRef
131.
go back to reference J. Stolfi and L. d. Figueiredo. Self-validated numerical methods and applications. In 21st Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, Brazil, 1997. J. Stolfi and L. d. Figueiredo. Self-validated numerical methods and applications. In 21st Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, Brazil, 1997.
132.
go back to reference W. Sung. Optimization of number representations. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, editors, Handbook of Signal Processing Systems. Springer, third edition, 2018. W. Sung. Optimization of number representations. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, editors, Handbook of Signal Processing Systems. Springer, third edition, 2018.
133.
go back to reference V. Tavsanoglu and L. Thiele. Optimal design of state - space digital filters by simultaneous minimization of sensitivity and roundoff noise. IEEE Transactions on Circuits and Systems, 31(10):884–888, 1984.MathSciNetCrossRef V. Tavsanoglu and L. Thiele. Optimal design of state - space digital filters by simultaneous minimization of sensitivity and roundoff noise. IEEE Transactions on Circuits and Systems, 31(10):884–888, 1984.MathSciNetCrossRef
134.
go back to reference L. Thiele. Design of sensitivity and round-off noise optimal state-space discrete systems. Int. J. Circuit Theory Appl., 12:39–46, 1984.MathSciNetCrossRef L. Thiele. Design of sensitivity and round-off noise optimal state-space discrete systems. Int. J. Circuit Theory Appl., 12:39–46, 1984.MathSciNetCrossRef
135.
go back to reference L. Thiele. On the sensitivity of linear state-space systems. IEEE Transactions on Circuits and Systems, 33(5):502–510, 1986.MathSciNetCrossRef L. Thiele. On the sensitivity of linear state-space systems. IEEE Transactions on Circuits and Systems, 33(5):502–510, 1986.MathSciNetCrossRef
136.
go back to reference K. Uesaka and M. Kawamata. Synthesis of low coefficient sensitivity digital filters using genetic programming. In IEEE International Symposium on Circuits and Systems, ISCAS ’99, volume 3, pages 307–310 vol3, 1999. K. Uesaka and M. Kawamata. Synthesis of low coefficient sensitivity digital filters using genetic programming. In IEEE International Symposium on Circuits and Systems, ISCAS ’99, volume 3, pages 307–310 vol3, 1999.
137.
go back to reference K. Uesaka and M. Kawamata. Heuristic synthesis of low coefficient sensitivity second-order digital filters using genetic programming. IEEE Proceedings Circuits, Devices and Systems, 148(3):121–125, 2001.CrossRef K. Uesaka and M. Kawamata. Heuristic synthesis of low coefficient sensitivity second-order digital filters using genetic programming. IEEE Proceedings Circuits, Devices and Systems, 148(3):121–125, 2001.CrossRef
138.
go back to reference K. Uesaka and M. Kawamata. Evolutionary synthesis of digital filter structures using genetic programming. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(12):977–983, 2003.CrossRef K. Uesaka and M. Kawamata. Evolutionary synthesis of digital filter structures using genetic programming. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(12):977–983, 2003.CrossRef
139.
go back to reference P. Vaidyanathan and V. Liu. An improved sufficient condition for absence of limit cycles in digital filters. IEEE Transactions on Circuits and Systems, 34(3):319–322, 1987.CrossRef P. Vaidyanathan and V. Liu. An improved sufficient condition for absence of limit cycles in digital filters. IEEE Transactions on Circuits and Systems, 34(3):319–322, 1987.CrossRef
140.
go back to reference S. Wadekar and A. Parker. Accuracy sensitive word-length selection for algorithm optimization. In International Conference on Computer Design: VLSI in Computers and Processors, 1998, pages 54–61, 1998. S. Wadekar and A. Parker. Accuracy sensitive word-length selection for algorithm optimization. In International Conference on Computer Design: VLSI in Computers and Processors, 1998, pages 54–61, 1998.
141.
go back to reference B. Widrow. Statistical Analysis of Amplitude Quantized Sampled-Data Systems. Transaction on AIEE, Part. II: Applications and Industry, 79:555–568, 1960. B. Widrow. Statistical Analysis of Amplitude Quantized Sampled-Data Systems. Transaction on AIEE, Part. II: Applications and Industry, 79:555–568, 1960.
142.
go back to reference B. Widrow, I. Kollar, and M.-C. Liu. Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurement, 45(2):353–361, 1996.CrossRef B. Widrow, I. Kollar, and M.-C. Liu. Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurement, 45(2):353–361, 1996.CrossRef
143.
go back to reference M. Willems. A Methodology for the Efficient Design of Fixed-Point Systems. PhD thesis, Aachen University of Technology, German, 1998. M. Willems. A Methodology for the Efficient Design of Fixed-Point Systems. PhD thesis, Aachen University of Technology, German, 1998.
144.
go back to reference N. Wong and T.-S. Ng. A generalized direct-form delta operator-based iir filter with minimum noise gain and sensitivity. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(4):425–431, 2001.CrossRef N. Wong and T.-S. Ng. A generalized direct-form delta operator-based iir filter with minimum noise gain and sensitivity. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(4):425–431, 2001.CrossRef
145.
go back to reference B. Wu, J. Zhu, and F. Najm. An analytical approach for dynamic range estimation. In ACM/IEEE Design Automation Conference (DAC), pages 472–477, San Diego, june 2004. B. Wu, J. Zhu, and F. Najm. An analytical approach for dynamic range estimation. In ACM/IEEE Design Automation Conference (DAC), pages 472–477, San Diego, june 2004.
146.
go back to reference B. Wu, J. Zhu, and F. Najm. Dynamic range estimation for nonlinear systems. In IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 660–667, 2004. B. Wu, J. Zhu, and F. Najm. Dynamic range estimation for nonlinear systems. In IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 660–667, 2004.
147.
go back to reference C. Xiao. Improved l 2-sensitivity for state-space digital system. IEEE Transactions on Signal Processing, 45(4):837–840, 1997.CrossRef C. Xiao. Improved l 2-sensitivity for state-space digital system. IEEE Transactions on Signal Processing, 45(4):837–840, 1997.CrossRef
148.
go back to reference Z. Zhao and G. Li. Roundoff noise analysis of two efficient digital filter structures. IEEE Transactions on Signal Processing, 54(2):790–795, 2006.CrossRef Z. Zhao and G. Li. Roundoff noise analysis of two efficient digital filter structures. IEEE Transactions on Signal Processing, 54(2):790–795, 2006.CrossRef
Metadata
Title
Analysis of Finite Word-Length Effects in Fixed-Point Systems
Authors
D. Menard
G. Caffarena
J. A. Lopez
D. Novo
O. Sentieys
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91734-4_29