Skip to main content
Top
Published in: Wireless Networks 7/2019

02-01-2019

Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach

Authors: Alok Kumar, Prabhat Thakur, Shweta Pandit, G. Singh

Published in: Wireless Networks | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The spectrum sensing is a key process of the cognitive radio technology in which the cognitive users identify the unutilized/underutilized primary users (PUs)/licensed users spectrum for its efficient utilization. The sensing performance of cognitive radio (CR) is generally measured in terms of false-alarm probability (\( P_{f} \)) and detection probability (\( P_{d} \)). IEEE 802.22 wireless regional area network is one of the typical cognitive radio standards to access unused licensed frequencies of TV band and according to this standard, the false-alarm probability of CR should be ≤ 0.1 and the detection probability must be ≥ 0.9. Further, the detection and false-alarm probabilities are greatly affected by the selected threshold value in the spectrum sensing approach and selection of threshold is a crucial step to yield the status (presence/absence) of PU. In most of the available literatures, the threshold is decided by fixing one parameter (\( P_{f} \) or \( P_{d} \)) and optimizing the other parameter (\( P_{d} \) or \( P_{f} \)). Moreover, at low SNR, while achieving one of the targeted sensing parameter, there is significant degradation in the other sensing parameter. Therefore, in this paper, we are motivated to decide the optimal threshold at low SNR (signal-to-noise ratio) in such a way where we can jointly achieve both sensing matrices (\( P_{f} \) ≤ 0.1 and \( P_{d} \ge 0.9 \)) and provided better sensing performance in comparison to that of the traditional constant false-alarm rate and constant detection rate (CDR) threshold selection approaches. Further, we have illustrated that at low SNR, the proposed optimal threshold selection approach has provided better throughput as compare to that of the threshold selected by traditional CDR approach. The proposed approach has improved throughput approximately 24.63% when compared with CDR at chosen SNR.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communication, 24(3), 17–25.CrossRef Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communication, 24(3), 17–25.CrossRef
2.
go back to reference Ding, J., Jiang, L., & He, C. (2018). User-centric energy-efficient resource management for time switching wireless powered communications. IEEE Communications Letters, 22(1), 165–168.CrossRef Ding, J., Jiang, L., & He, C. (2018). User-centric energy-efficient resource management for time switching wireless powered communications. IEEE Communications Letters, 22(1), 165–168.CrossRef
3.
go back to reference Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758.CrossRef Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758.CrossRef
4.
go back to reference FCC. (2002). Spectrum policy task force report. In Proceedings of the federal communications commission (FCC’02), Washington, DC, USA. FCC. (2002). Spectrum policy task force report. In Proceedings of the federal communications commission (FCC’02), Washington, DC, USA.
5.
go back to reference Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regulatory policy. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regulatory policy. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef
6.
go back to reference Lin, Y.-E., Liu, K.-H., & Hsieh, H.-Y. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.CrossRef Lin, Y.-E., Liu, K.-H., & Hsieh, H.-Y. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.CrossRef
7.
go back to reference Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.CrossRef
8.
go back to reference Agarwal, S., & De, S. (2016). eDSA: Energy-efficient dynamic spectrum access protocols for cognitive radio networks. IEEE Transactions on Mobile Communication, 15(12), 3057–3071.CrossRef Agarwal, S., & De, S. (2016). eDSA: Energy-efficient dynamic spectrum access protocols for cognitive radio networks. IEEE Transactions on Mobile Communication, 15(12), 3057–3071.CrossRef
9.
go back to reference Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal of Wireless Communications and Networking, 28, 1–16. Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal of Wireless Communications and Networking, 28, 1–16.
10.
go back to reference Alkyldiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.MATHCrossRef Alkyldiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.MATHCrossRef
11.
go back to reference Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communication. Magazine, 46(4), 40–48.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communication. Magazine, 46(4), 40–48.CrossRef
12.
go back to reference Thakur, P., Singh, G., & Satashia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.CrossRef Thakur, P., Singh, G., & Satashia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.CrossRef
13.
go back to reference Pandit, S., & Singh, G. (2017). Spectrum sharing in cognitive radio networks: Medium access control protocol based approach. Cham: Springer.CrossRef Pandit, S., & Singh, G. (2017). Spectrum sharing in cognitive radio networks: Medium access control protocol based approach. Cham: Springer.CrossRef
14.
go back to reference Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114–121.CrossRef Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114–121.CrossRef
15.
go back to reference Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.CrossRef
16.
go back to reference Nafkha, A., & Aziz, B. (2014). Closed-form approximation for the performance of finite sample-based energy detection using correlated receiving antennas. IEEE Wireless Communications Letters, 3(6), 577–580.CrossRef Nafkha, A., & Aziz, B. (2014). Closed-form approximation for the performance of finite sample-based energy detection using correlated receiving antennas. IEEE Wireless Communications Letters, 3(6), 577–580.CrossRef
17.
go back to reference Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Communications, 9(3), 1216–1225. Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Communications, 9(3), 1216–1225.
18.
go back to reference Sobron, I., Diniz, P., Martins, W., & Velez, M. (2015). Energy detection technique for adaptive spectrum sensing. IEEE Transactions on Communications, 63(3), 617–627.CrossRef Sobron, I., Diniz, P., Martins, W., & Velez, M. (2015). Energy detection technique for adaptive spectrum sensing. IEEE Transactions on Communications, 63(3), 617–627.CrossRef
19.
go back to reference Kapoor, S., Rao, S., & Singh, G. (2011). Opportunistic spectrum sensing by employing matched filter in cognitive radio network. In Proceedings of IEEE international conference on communication systems and network technologies (CSNT 2011), India (pp. 580–583). Kapoor, S., Rao, S., & Singh, G. (2011). Opportunistic spectrum sensing by employing matched filter in cognitive radio network. In Proceedings of IEEE international conference on communication systems and network technologies (CSNT 2011), India (pp. 580–583).
20.
go back to reference Salahdine, F., Ghazi, H. E., Kaabouch, N., & Fihri, W. F. (2015). Matched filter detection with dynamic threshold for cognitive radio network. In Proceedings of international conference on wireless networks and mobile communications, Morocco (pp. 1–6). Salahdine, F., Ghazi, H. E., Kaabouch, N., & Fihri, W. F. (2015). Matched filter detection with dynamic threshold for cognitive radio network. In Proceedings of international conference on wireless networks and mobile communications, Morocco (pp. 1–6).
21.
go back to reference Du, K.-L., & Mow, W. H. (2010). Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antenna. IEEE Transactions on Vehicular Technology, 59(4), 1877–1886.CrossRef Du, K.-L., & Mow, W. H. (2010). Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antenna. IEEE Transactions on Vehicular Technology, 59(4), 1877–1886.CrossRef
22.
go back to reference Zeng, Y., & Liang, Y. (2009). Spectrum-sensing algorithms for cognitive radio based on statistical co-variances. IEEE Transaction on Vehicular Technology, 58(4), 1804–1815.CrossRef Zeng, Y., & Liang, Y. (2009). Spectrum-sensing algorithms for cognitive radio based on statistical co-variances. IEEE Transaction on Vehicular Technology, 58(4), 1804–1815.CrossRef
23.
go back to reference Zeng, Y., & Liang, Y. C. (2009). Eigen value-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communication, 57(6), 1784–1793.CrossRef Zeng, Y., & Liang, Y. C. (2009). Eigen value-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communication, 57(6), 1784–1793.CrossRef
24.
go back to reference Yousif, E. H. G., Ratnarajah, T., & Sellathurai, M. (2016). A frequency domain approach to eigenvalue-based detection with diversity reception and spectrum estimation. IEEE Transactions on Signal Processing, 64(1), 35–47.MathSciNetMATHCrossRef Yousif, E. H. G., Ratnarajah, T., & Sellathurai, M. (2016). A frequency domain approach to eigenvalue-based detection with diversity reception and spectrum estimation. IEEE Transactions on Signal Processing, 64(1), 35–47.MathSciNetMATHCrossRef
25.
go back to reference Scott Parsons. (2014). “Literature review of cognitive radio spectrum sensing” EE 359 project. Stanford: Stanford University. Scott Parsons. (2014). “Literature review of cognitive radio spectrum sensing” EE 359 project. Stanford: Stanford University.
26.
go back to reference Ali, A., & Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communication Surveys Tutorial, 19(2), 1277–1304.CrossRef Ali, A., & Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communication Surveys Tutorial, 19(2), 1277–1304.CrossRef
28.
go back to reference Atapattu, S., Tellambura, C., & Jiang, H. (2011). Spectrum sensing via energy detector in low SNR. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–5). Atapattu, S., Tellambura, C., & Jiang, H. (2011). Spectrum sensing via energy detector in low SNR. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–5).
29.
go back to reference Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2017). Fixed and dynamic threshold selection criteria in energy detection for cognitive radio communication systems. In Proceedings of 10th IEEE international conference on contemporary computing (IC3), India (pp. 1–6). Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2017). Fixed and dynamic threshold selection criteria in energy detection for cognitive radio communication systems. In Proceedings of 10th IEEE international conference on contemporary computing (IC3), India (pp. 1–6).
30.
go back to reference Verma, G., & Sahu, O. P. (2016). Intelligent selection of threshold in cognitive radio system. Telecommunication System, 63(4), 547–556.CrossRef Verma, G., & Sahu, O. P. (2016). Intelligent selection of threshold in cognitive radio system. Telecommunication System, 63(4), 547–556.CrossRef
31.
go back to reference Koley, S., Mirza, V., Islam, S., & Mitra, D. (2015). Gradient-based real-time spectrum sensing at low SNR. IEEE Communications Letters, 19(3), 391–394.CrossRef Koley, S., Mirza, V., Islam, S., & Mitra, D. (2015). Gradient-based real-time spectrum sensing at low SNR. IEEE Communications Letters, 19(3), 391–394.CrossRef
32.
go back to reference Verma, G., & Sahu, O. P. (2016). Opportunistic selection of threshold in cognitive radio networks. Wireless Personal Communication, 92(2), 711–726.CrossRef Verma, G., & Sahu, O. P. (2016). Opportunistic selection of threshold in cognitive radio networks. Wireless Personal Communication, 92(2), 711–726.CrossRef
33.
go back to reference Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2017). Performance analysis of different threshold selection schemes in energy detection for cognitive radio communication systems. In Proceedings of 4th IEEE international conference on image information processing (ICIIP), India (pp. 153–158). Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2017). Performance analysis of different threshold selection schemes in energy detection for cognitive radio communication systems. In Proceedings of 4th IEEE international conference on image information processing (ICIIP), India (pp. 153–158).
34.
go back to reference Gandhi, P. P., & Kassam, S. A. (1988). Analysis of CFAR processors in non-homogeneous background. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 427–445.CrossRef Gandhi, P. P., & Kassam, S. A. (1988). Analysis of CFAR processors in non-homogeneous background. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 427–445.CrossRef
35.
go back to reference Kortun, A., Ratnarajah, T., Sellathurai, M., Liang, Y. C., & Zeng, Y. (2014). On the eigenvalue-based spectrum sensing and secondary user throughput. IEEE Transactions on Vehicular Technology, 63(3), 1480–1486.CrossRef Kortun, A., Ratnarajah, T., Sellathurai, M., Liang, Y. C., & Zeng, Y. (2014). On the eigenvalue-based spectrum sensing and secondary user throughput. IEEE Transactions on Vehicular Technology, 63(3), 1480–1486.CrossRef
36.
go back to reference Lehtomäki, J. J., Vartiainen, J., Juntti, M., & Saarnisaari, H. (2007). CFAR outlier detection with forward methods. IEEE Transactions on Signal Processing, 55(9), 4702–4706.MathSciNetMATHCrossRef Lehtomäki, J. J., Vartiainen, J., Juntti, M., & Saarnisaari, H. (2007). CFAR outlier detection with forward methods. IEEE Transactions on Signal Processing, 55(9), 4702–4706.MathSciNetMATHCrossRef
37.
go back to reference Mahdi, H., Badrawi, A., & Kirsch, N. J. (2015). An EMD based double threshold detector for spectrum sensing in cognitive radio networks. In Proceedings of 82nd IEEE international conference on vehicular technology (VTC Fall), Boston, USA (pp. 1–5). Mahdi, H., Badrawi, A., & Kirsch, N. J. (2015). An EMD based double threshold detector for spectrum sensing in cognitive radio networks. In Proceedings of 82nd IEEE international conference on vehicular technology (VTC Fall), Boston, USA (pp. 1–5).
38.
go back to reference Politis, C., Maleki, S., Tsinos, C. G., Liolis, K. P., Chatzinotas, S., & Ottersten, B. (2017). Simultaneous sensing and transmission for cognitive radios with imperfect signal cancellation. IEEE Transactions on Wireless Communications, 16(9), 5599–5615.CrossRef Politis, C., Maleki, S., Tsinos, C. G., Liolis, K. P., Chatzinotas, S., & Ottersten, B. (2017). Simultaneous sensing and transmission for cognitive radios with imperfect signal cancellation. IEEE Transactions on Wireless Communications, 16(9), 5599–5615.CrossRef
39.
go back to reference Sarker, M. (2015). Energy detector-based spectrum sensing by adaptive threshold for low SNR in CR networks. In Proceedings of 24th wireless and optical communication conference (WOCC), Taipei, Taiwan (pp. 118–122). Sarker, M. (2015). Energy detector-based spectrum sensing by adaptive threshold for low SNR in CR networks. In Proceedings of 24th wireless and optical communication conference (WOCC), Taipei, Taiwan (pp. 118–122).
40.
go back to reference Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.CrossRef Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.CrossRef
41.
go back to reference Xuping, Z., Haigen, H., & Guoxin, Z. (2010). Optimal threshold and weighted cooperative data combining rule in cognitive radio network. In Proceedings of 12th IEEE international conference on communication technology (ICCT), Nanjing, China (pp. 1464–1467). Xuping, Z., Haigen, H., & Guoxin, Z. (2010). Optimal threshold and weighted cooperative data combining rule in cognitive radio network. In Proceedings of 12th IEEE international conference on communication technology (ICCT), Nanjing, China (pp. 1464–1467).
42.
go back to reference Choi, H.-H., Jang, K., & Cheong, Y. (2008). Adaptive sensing threshold control based on transmission power in cognitive radio systems. In Proceedings of 3 rd international conference on cognitive radio oriented wireless networks and communication (CROWNCOM), Singapore (pp. 1–6). Choi, H.-H., Jang, K., & Cheong, Y. (2008). Adaptive sensing threshold control based on transmission power in cognitive radio systems. In Proceedings of 3 rd international conference on cognitive radio oriented wireless networks and communication (CROWNCOM), Singapore (pp. 1–6).
43.
go back to reference Joshi, D. R., Popescu, D. C., & Dobre, O. A. (2010). Dynamic threshold adaptation for spectrum sensing in cognitive radio systems. In Proceedings of radio and wireless symposium (RWS), New Orleans (pp. 468–471). Joshi, D. R., Popescu, D. C., & Dobre, O. A. (2010). Dynamic threshold adaptation for spectrum sensing in cognitive radio systems. In Proceedings of radio and wireless symposium (RWS), New Orleans (pp. 468–471).
44.
go back to reference Joshi, D. R., Popescu, D. C., & Dobre, O. A. (2011). Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 15(1), 19–21.CrossRef Joshi, D. R., Popescu, D. C., & Dobre, O. A. (2011). Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 15(1), 19–21.CrossRef
45.
go back to reference Nasreddine, J., Riihijarvi, J., & Mahonen, P. (2010). Location-based adaptive detection threshold for dynamic spectrum access. In Proceedings of IEEE international symposium on new frontiers in dynamic spectrum access network, Singapore (pp. 1–10). Nasreddine, J., Riihijarvi, J., & Mahonen, P. (2010). Location-based adaptive detection threshold for dynamic spectrum access. In Proceedings of IEEE international symposium on new frontiers in dynamic spectrum access network, Singapore (pp. 1–10).
46.
go back to reference Yu, T. H., Sekkat, O., Parera, S. R., Markovic, D., & Cabric, D. (2011). A wideband spectrum-sensing processor with adaptive detection threshold and sensing time. IEEE Transaction Circuits and Systems I: Regular Papers, 58(11), 2765–2775.MathSciNetCrossRef Yu, T. H., Sekkat, O., Parera, S. R., Markovic, D., & Cabric, D. (2011). A wideband spectrum-sensing processor with adaptive detection threshold and sensing time. IEEE Transaction Circuits and Systems I: Regular Papers, 58(11), 2765–2775.MathSciNetCrossRef
47.
go back to reference Ling, X., Wu, B., Wen, H., Ho, P. H., Bao, Z., & Pan, L. (2012). Adaptive threshold control for energy detection-based spectrum sensing in cognitive radios. IEEE Wireless Communications Letters, 1(5), 448–451.CrossRef Ling, X., Wu, B., Wen, H., Ho, P. H., Bao, Z., & Pan, L. (2012). Adaptive threshold control for energy detection-based spectrum sensing in cognitive radios. IEEE Wireless Communications Letters, 1(5), 448–451.CrossRef
48.
go back to reference Umebayashi, K., Hayashi, K., & Lehtomäki, J. J. (2017). Threshold-setting for spectrum sensing based on statistical information. IEEE Communications Letters, 21(7), 1585–1588.CrossRef Umebayashi, K., Hayashi, K., & Lehtomäki, J. J. (2017). Threshold-setting for spectrum sensing based on statistical information. IEEE Communications Letters, 21(7), 1585–1588.CrossRef
49.
go back to reference Ding, G., Jiao, Y., Wang, J., Zou, Y., Wu, Q., Yao, Y. D., et al. (2018). Spectrum inference in cognitive radio networks: Algorithms and applications. IEEE Communications Surveys & Tutorials, 20(1), 150–182.CrossRef Ding, G., Jiao, Y., Wang, J., Zou, Y., Wu, Q., Yao, Y. D., et al. (2018). Spectrum inference in cognitive radio networks: Algorithms and applications. IEEE Communications Surveys & Tutorials, 20(1), 150–182.CrossRef
51.
go back to reference Charan, C., & Pandey, R. (2018). Intelligent selection of threshold in covariance-based spectrum sensing for cognitive radio networks. Wireless Network, 24(8), 3267–3279.CrossRef Charan, C., & Pandey, R. (2018). Intelligent selection of threshold in covariance-based spectrum sensing for cognitive radio networks. Wireless Network, 24(8), 3267–3279.CrossRef
52.
go back to reference Benedetto, F., & Giunta, G. (2018). A novel PU sensing algorithm for constant energy signals. IEEE Transactions on Vehicular Technology, 67(1), 827–831.CrossRef Benedetto, F., & Giunta, G. (2018). A novel PU sensing algorithm for constant energy signals. IEEE Transactions on Vehicular Technology, 67(1), 827–831.CrossRef
53.
go back to reference Jin, M., Guo, Q., Xi, J., Li, Y., Yu, Y., & Huang, D. D. (2015). Spectrum sensing using weighted covariance matrix in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 64(11), 5137–5148.CrossRef Jin, M., Guo, Q., Xi, J., Li, Y., Yu, Y., & Huang, D. D. (2015). Spectrum sensing using weighted covariance matrix in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 64(11), 5137–5148.CrossRef
54.
go back to reference Chen, A. Z., Shi, Z. P., & He, Z. Q. (2018). A robust blind detection algorithm for cognitive radio networks with correlated multiple antennas. IEEE Communications Letters, 22(3), 570–573. Chen, A. Z., Shi, Z. P., & He, Z. Q. (2018). A robust blind detection algorithm for cognitive radio networks with correlated multiple antennas. IEEE Communications Letters, 22(3), 570–573.
55.
go back to reference Xiong, T., Yao, Y. D., Ren, Y., & Li, Z. (2018). Multiband spectrum sensing in cognitive radio networks with secondary user hardware limitation: random and adaptive spectrum sensing strategies. IEEE Transactions on Wireless Communications, 17(5), 3018–3029.CrossRef Xiong, T., Yao, Y. D., Ren, Y., & Li, Z. (2018). Multiband spectrum sensing in cognitive radio networks with secondary user hardware limitation: random and adaptive spectrum sensing strategies. IEEE Transactions on Wireless Communications, 17(5), 3018–3029.CrossRef
56.
go back to reference Bayat, A., & Aïssa, S. (2018). Full-duplex cognitive radio with asynchronous energy-efficient sensing. IEEE Transactions on Wireless Communications, 17(2), 1066–1080.CrossRef Bayat, A., & Aïssa, S. (2018). Full-duplex cognitive radio with asynchronous energy-efficient sensing. IEEE Transactions on Wireless Communications, 17(2), 1066–1080.CrossRef
57.
go back to reference Makarfi, A., & Hamdi, K. (2013). Interference analysis of energy detection for spectrum sensing. IEEE Transactions on Vehicular Technology, 62(6), 2570–2578.CrossRef Makarfi, A., & Hamdi, K. (2013). Interference analysis of energy detection for spectrum sensing. IEEE Transactions on Vehicular Technology, 62(6), 2570–2578.CrossRef
58.
go back to reference Verma, P., & Singh, B. (2018). Joint optimization of sensing duration and detection threshold for maximizing the spectrum utilization. Digital Signal Processing, 74, 94–101.MathSciNetCrossRef Verma, P., & Singh, B. (2018). Joint optimization of sensing duration and detection threshold for maximizing the spectrum utilization. Digital Signal Processing, 74, 94–101.MathSciNetCrossRef
59.
go back to reference MacDonald, S. L., & Popescu, D. C. (2013). Impact of primary user activity on the performance of energy-based spectrum sensing in cognitive radio systems. In Proceedings of IEEE global communications conference (Globecom) (pp. 3224–3228). MacDonald, S. L., & Popescu, D. C. (2013). Impact of primary user activity on the performance of energy-based spectrum sensing in cognitive radio systems. In Proceedings of IEEE global communications conference (Globecom) (pp. 3224–3228).
60.
go back to reference Fu, C., Li, Y., He, Y., Jin, M., Wang, G., & Lei, P. (2017). An inter-frame dynamic double-threshold energy detection for spectrum sensing in cognitive radios. EURASIP Journal on Wireless Communication and Networking, 1, 2017. Fu, C., Li, Y., He, Y., Jin, M., Wang, G., & Lei, P. (2017). An inter-frame dynamic double-threshold energy detection for spectrum sensing in cognitive radios. EURASIP Journal on Wireless Communication and Networking, 1, 2017.
61.
go back to reference Cabric, D., Tkachenko, A., & Brodersen, R.W. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of ACM international workshop on technology and policy for accessing spectrum (TAPAS), Boston (pp. 1–8). Cabric, D., Tkachenko, A., & Brodersen, R.W. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of ACM international workshop on technology and policy for accessing spectrum (TAPAS), Boston (pp. 1–8).
62.
go back to reference Liang, Y. C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transaction on Wireless Communication, 7(4), 1326–1337.CrossRef Liang, Y. C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transaction on Wireless Communication, 7(4), 1326–1337.CrossRef
63.
go back to reference Atapattu, S., Tellambura, C., Jiang, H., & Rajatheva, N. (2015). Unified analysis of low-SNR energy detection and threshold selection. IEEE Transactions on Vehicular Technology, 64(11), 5006–5019.CrossRef Atapattu, S., Tellambura, C., Jiang, H., & Rajatheva, N. (2015). Unified analysis of low-SNR energy detection and threshold selection. IEEE Transactions on Vehicular Technology, 64(11), 5006–5019.CrossRef
64.
go back to reference MATLAB and Statistics Toolbox Release. (2010). The Math Works, Inc., Natick, MA. MATLAB and Statistics Toolbox Release. (2010). The Math Works, Inc., Natick, MA.
Metadata
Title
Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach
Authors
Alok Kumar
Prabhat Thakur
Shweta Pandit
G. Singh
Publication date
02-01-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-01927-y

Other articles of this Issue 7/2019

Wireless Networks 7/2019 Go to the issue