Skip to main content
Top

30-05-2024

Analysis of the HIV/AIDS Data Using Joint Modeling of Longitudinal (k,l)-Inflated Count and Time to Event Data in Clinical Trials

Authors: Mojtaba Zeinali Najafabadi, Ehsan Bahrami Samani

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Generalized linear mixed effect models (GLMEMs) are widely applied for the analysis of correlated non-Gaussian data such as those found in longitudinal studies. On the other hand, the Cox (proportional hazards, PHs) and the accelerated failure time (AFT) regression models are two well-known approaches in survival analysis to modeling time to event (TTE) data. In this article, we develop joint modeling of longitudinal count (LC) and TTE data and consider extensions with fixed effects and parametric random effects in our proposed joint models. The LC response is inflated in two points k and l (k < l) and we use some members of (k, l)-inflated power series distribution (PSD) as the distribution of this response. Also, for modeling of TTE process, the PHs model of Cox and the AFT model, based on a flexible hazard function, are separately proposed. One of the goals of the present paper is to evaluate and compare the performance of joint models of (k, l)-inflated LC and TTE data under two mentioned approaches via extensive simulations. The estimation is through the penalized likelihood method, and our concentration is on efficient computation and effective parameter selection. To assist efficient computation, the joint likelihoods of the observations and the latent variables of the random effects are used instead of the marginal likelihood of the observations. Finally, a real AIDS data example is presented to illustrate the potential applications of our joint models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dobson AJ, Barnett AG (2008) An introduction to generalized linear models, 3rd edn. Chapman & Hall/CRC, Boca RatonCrossRef Dobson AJ, Barnett AG (2008) An introduction to generalized linear models, 3rd edn. Chapman & Hall/CRC, Boca RatonCrossRef
2.
go back to reference Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data, 2nd edn. John Wiley and Sons, New JerseyCrossRef Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time-to-event data, 2nd edn. John Wiley and Sons, New JerseyCrossRef
3.
go back to reference Klein JP, Moeschberger ML (2003) Survival analysis—techniques for censored and truncated data. Second edition statistics for biology and health, Springer, Berlin Klein JP, Moeschberger ML (2003) Survival analysis—techniques for censored and truncated data. Second edition statistics for biology and health, Springer, Berlin
6.
go back to reference Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef
7.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
8.
go back to reference Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New YorkCrossRef Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New YorkCrossRef
13.
go back to reference Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London
14.
go back to reference Asar O, Ritchie J, Kalra PA, Diggle PJ (2015) Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. Int J Epidemiol 44(1):334–344CrossRef Asar O, Ritchie J, Kalra PA, Diggle PJ (2015) Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. Int J Epidemiol 44(1):334–344CrossRef
17.
go back to reference Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York
24.
go back to reference Rizopoulos D (2012) joint models for longitudinal and time-to-event data, with applications in R. Chapman & Hall/CRC, Boca RatonCrossRef Rizopoulos D (2012) joint models for longitudinal and time-to-event data, with applications in R. Chapman & Hall/CRC, Boca RatonCrossRef
26.
go back to reference Wienke A (2011) Frailty models in survival analysis. Chapman & Hall/CRC, Boca Raton Wienke A (2011) Frailty models in survival analysis. Chapman & Hall/CRC, Boca Raton
27.
go back to reference McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonCrossRef McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonCrossRef
28.
go back to reference Agresti A (2015) Foundations of linear and generalized linear models, 1st edn. Wiley Series in Probability and Statistics, New York Agresti A (2015) Foundations of linear and generalized linear models, 1st edn. Wiley Series in Probability and Statistics, New York
Metadata
Title
Analysis of the HIV/AIDS Data Using Joint Modeling of Longitudinal (k,l)-Inflated Count and Time to Event Data in Clinical Trials
Authors
Mojtaba Zeinali Najafabadi
Ehsan Bahrami Samani
Publication date
30-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00532-5

Premium Partner