Skip to main content
Top

2024 | OriginalPaper | Chapter

Analysis of the Influence of Tyre Cross-Sectional Parameters on the Stability of a Nonlinear Bicycle Model with Elliptic Toroidal Wheels

Authors : A. G. Agúndez, D. García-Vallejo, E. Freire

Published in: Perspectives in Dynamical Systems I — Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the stability of a bicycle with elliptic toroidal wheels is analysed in detail. The influence of the tyre cross-sectional parameters on the self-stability velocity range of the steady forward motion is studied. The bicycle multibody model is based on a well-acknowledged bicycle benchmark, which has been extensively used in several works. The nonlinear equations of motion, constituting a Differential-Algebraic Equations (DAE) system, are derived and linearized along the steady forward motion. The robustness of the linearization approach allows obtaining the resulting Jacobian matrix as a function of the tyre cross-sectional parameters. Therefore, a sensitivity analysis of the eigenvalues with the wheels’ geometric parameters is performed. Different scenarios are considered, and the influence of the tori aspect ratios and the elliptic cross-sections are illustrated with various stability regions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Francis JohnWelsh Whipple. The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120):312–321, 1899. Francis JohnWelsh Whipple. The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120):312–321, 1899.
2.
go back to reference Karl J Astrom, Richard E Klein, and Anders Lennartsson. Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Systems Magazine, 25(4):26–47, 2005. Karl J Astrom, Richard E Klein, and Anders Lennartsson. Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Systems Magazine, 25(4):26–47, 2005.
3.
go back to reference David JN Limebeer and Robin S Sharp. Bicycles, motorcycles, and models. IEEE Control Systems Magazine, 26(5):34–61, 2006. David JN Limebeer and Robin S Sharp. Bicycles, motorcycles, and models. IEEE Control Systems Magazine, 26(5):34–61, 2006.
4.
go back to reference Jaap P Meijaard, Jim M Papadopoulos, Andy Ruina, and Arend L Schwab. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: mathematical, physical and engineering sciences, 463(2084):1955–1982, 2007. Jaap P Meijaard, Jim M Papadopoulos, Andy Ruina, and Arend L Schwab. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: mathematical, physical and engineering sciences, 463(2084):1955–1982, 2007.
5.
go back to reference Pradipta Basu-Mandal, Anindya Chatterjee, and Jim M Papadopoulos. Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1983–2003, 2007. Pradipta Basu-Mandal, Anindya Chatterjee, and Jim M Papadopoulos. Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1983–2003, 2007.
6.
go back to reference José L Escalona and Antonio M Recuero. A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody System Dynamics, 27(3):383–402, 2012. José L Escalona and Antonio M Recuero. A bicycle model for education in multibody dynamics and real-time interactive simulation. Multibody System Dynamics, 27(3):383–402, 2012.
7.
go back to reference Jiaming Xiong, Nannan Wang, and Caishan Liu. Stability analysis for the whipple bicycle dynamics. Multibody System Dynamics, 48(3):311–335, 2020.MathSciNetCrossRef Jiaming Xiong, Nannan Wang, and Caishan Liu. Stability analysis for the whipple bicycle dynamics. Multibody System Dynamics, 48(3):311–335, 2020.MathSciNetCrossRef
8.
go back to reference JDG Kooijman, AL Schwab, and Jacob Philippus Meijaard. Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 19(1–2):115–132, 2008. JDG Kooijman, AL Schwab, and Jacob Philippus Meijaard. Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 19(1–2):115–132, 2008.
9.
go back to reference Jiaming Xiong, Nannan Wang, and Caishan Liu. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 36(1):220–233, 2020.MathSciNetCrossRef Jiaming Xiong, Nannan Wang, and Caishan Liu. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 36(1):220–233, 2020.MathSciNetCrossRef
10.
go back to reference JP Meijaard and AL Schwab. Linearized equations for an extended bicycle model. In III European Conference on Computational Mechanics, pages 772–772. Springer, 2006. JP Meijaard and AL Schwab. Linearized equations for an extended bicycle model. In III European Conference on Computational Mechanics, pages 772–772. Springer, 2006.
11.
go back to reference AL Schwab, JP Meijaard, and JDG Kooijman. Some recent developments in bicycle dynamics. In Proceedings of the 12th World Congress in Mechanism and Machine Science, pages 1–6. Citeseer, 2007. AL Schwab, JP Meijaard, and JDG Kooijman. Some recent developments in bicycle dynamics. In Proceedings of the 12th World Congress in Mechanism and Machine Science, pages 1–6. Citeseer, 2007.
12.
go back to reference Robin S Sharp. On the stability and control of the bicycle. Applied mechanics reviews, 61(6), 2008. Robin S Sharp. On the stability and control of the bicycle. Applied mechanics reviews, 61(6), 2008.
13.
go back to reference Jason Keith Moore. Human control of a bicycle. University of California, Davis Davis, CA, 2012. Jason Keith Moore. Human control of a bicycle. University of California, Davis Davis, CA, 2012.
14.
go back to reference Vera E Bulsink, Alberto Doria, Dorien van de Belt, and Bart Koopman. The effect of tyre and rider properties on the stability of a bicycle. Advances in mechanical engineering, 7(12):1687814015622596, 2015. Vera E Bulsink, Alberto Doria, Dorien van de Belt, and Bart Koopman. The effect of tyre and rider properties on the stability of a bicycle. Advances in mechanical engineering, 7(12):1687814015622596, 2015.
15.
go back to reference A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, Article in press (2020). A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, Article in press (2020).
16.
go back to reference José L Escalona and Rosario Chamorro. Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dynamics, 53(3):237–250, 2008. José L Escalona and Rosario Chamorro. Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dynamics, 53(3):237–250, 2008.
17.
go back to reference Francisco González, Pierangelo Masarati, Javier Cuadrado, and Miguel A Naya. Assessment of linearization approaches for multibody dynamics formulations. Journal of Computational and Nonlinear Dynamics, 12(4), 2017. Francisco González, Pierangelo Masarati, Javier Cuadrado, and Miguel A Naya. Assessment of linearization approaches for multibody dynamics formulations. Journal of Computational and Nonlinear Dynamics, 12(4), 2017.
18.
go back to reference Carmine M Pappalardo, Antonio Lettieri, and Domenico Guida. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Archive of Applied Mechanics, 2020. Carmine M Pappalardo, Antonio Lettieri, and Domenico Guida. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Archive of Applied Mechanics, 2020.
19.
go back to reference Dale L Peterson, Gilbert Gede, and Mont Hubbard. Symbolic linearization of equations of motion of constrained multibody systems. Multibody System Dynamics, 33(2):143–161, 2015. Dale L Peterson, Gilbert Gede, and Mont Hubbard. Symbolic linearization of equations of motion of constrained multibody systems. Multibody System Dynamics, 33(2):143–161, 2015.
20.
go back to reference A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, 103(1):557–580, 2021.CrossRef A García-Agúndez, D García-Vallejo, and E Freire. Linearization approaches for general multibody systems validated through stability analysis of a benchmark bicycle model. Nonlinear Dynamics, 103(1):557–580, 2021.CrossRef
21.
go back to reference Jaap P. Meijaard, Jim M. Papadopoulos, Andy Ruina, and Arend L. Schwab. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1955–1982, 2007.MathSciNetCrossRef Jaap P. Meijaard, Jim M. Papadopoulos, Andy Ruina, and Arend L. Schwab. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084):1955–1982, 2007.MathSciNetCrossRef
22.
go back to reference Ahmed A Shabana and Jalil R Sany. An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear dynamics, 24(2):183–204, 2001. Ahmed A Shabana and Jalil R Sany. An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear dynamics, 24(2):183–204, 2001.
23.
Metadata
Title
Analysis of the Influence of Tyre Cross-Sectional Parameters on the Stability of a Nonlinear Bicycle Model with Elliptic Toroidal Wheels
Authors
A. G. Agúndez
D. García-Vallejo
E. Freire
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56492-5_3

Premium Partners