Skip to main content
Top
Published in: Physics of Metals and Metallography 4/2020

01-04-2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Analysis of the Microstructure, Phase Composition, and Oxidation Kinetics of Heat-Resistant Titanium Alloys with Gadolinium

Authors: A. A. Popov, M. O. Leder, M. C. Karabanalov, E. N. Popova, I. V. Narygina

Published in: Physics of Metals and Metallography | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure, phase composition, and local chemical composition of half-finished products (rods) made from Ti–Al–Mo–Zr–Si- and Ti–Al–Mo–Zr–Sn–Si-based alloys additionally microalloyed with 0.4 wt % gadolinium have been studied in this work. The structure of the rod made from the Gd-alloyed Ti–Al–Mo–Zr–Si composition was found to be characterized by the presence of Gd2O3 gadolinium oxide particles. The structure of the rod made from the Gd-alloyed Ti–Al–Mo–Zr–Sn–Si composition, which contains tin as a low-melting element, is characterized by the presence of Gd–Sn–O complex oxide particles, whose cores and shells are Gd5Sn3 intermetallics and Gd2O3 gadolinium oxide, respectively. The formation of such particles in both alloys occurs at the stage of ingot solidification, and the particles remain in the materials at all stages of their subsequent treatment. The oxidation kinetics of the alloys upon isothermal holding in a temperature range of 600–800°С is studied depending on the structure of half-finished products. The oxidation processes of the Ti–Al–Mo–Zr–Sn–Si alloy are less intensive than those of the Ti–Al–Mo–Zr–Si alloy. The alloying with gadolinium up to 0.4 wt % leads to the accelerated oxidation of the tin-free alloy, which is due to the presence of Gd2O3 particles precipitated at grain boundaries and interfaces. The alloying of the tin-containing composition with gadolinium almost does not affect the oxidation kinetics at 600–700°С and slightly decelerates the oxidation at 750–800°С; this is related to the presence of the Gd–Sn–O oxide particles in the structure, which are uniformly distributed over the grain body. The laws of oxidation of both the compositions free from gadolinium and alloyed with gadolinium were determined. It was shown that the oxide film formed upon the oxidation of both alloys is multilayer and consists of alternating layers of aluminum and titanium oxides. In this case, the progressive growth of oxide film layers alters the film exfoliation owing to the high brittleness of aluminum oxides. The presence of gadolinium oxide particles in both alloys leads to the porosity of diffusion zone of the base metal upon oxidation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. F. Anoshkin and Yu. M. Sigalov, “Titanium alloys with enhanced heat resistance,” Tekhn. Legkikh Splavov, No. 1, 38–50 (2002). N. F. Anoshkin and Yu. M. Sigalov, “Titanium alloys with enhanced heat resistance,” Tekhn. Legkikh Splavov, No. 1, 38–50 (2002).
2.
go back to reference O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State, problems and prospects of creating heat-resistant titanium alloys for gas turbine engine parts,” Trudy VIAM, No. 3 (2013). O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State, problems and prospects of creating heat-resistant titanium alloys for gas turbine engine parts,” Trudy VIAM, No. 3 (2013).
3.
go back to reference Titanium and Titanium Alloys. Fundamentals and Applications, Ed. by C. Leyens and M. Peters (Wiley, Weinheim, 2003). Titanium and Titanium Alloys. Fundamentals and Applications, Ed. by C. Leyens and M. Peters (Wiley, Weinheim, 2003).
4.
go back to reference V. G. Antashev, N. A. Nochovnaya, T. V. Pavlova, and V. I. Ivanov, Heat Resistant Titanium Alloys. All Materials. Handbook, No. 3, 7–8 (2007). V. G. Antashev, N. A. Nochovnaya, T. V. Pavlova, and V. I. Ivanov, Heat Resistant Titanium Alloys. All Materials. Handbook, No. 3, 7–8 (2007).
5.
go back to reference R. A. Gaisin, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a near-α-titanium-alloy/TiB composite prepared in situ by casting and subjected to deformation and heat treatment,” Phys. Met. Metallogr. 119, 907–916 (2018).CrossRef R. A. Gaisin, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a near-α-titanium-alloy/TiB composite prepared in situ by casting and subjected to deformation and heat treatment,” Phys. Met. Metallogr. 119, 907–916 (2018).CrossRef
6.
go back to reference H. Fu, Q. Xiao, and Y. Li, “A study of the microstructures and properties of Fe–V–W–Mo alloy modified by rare earth,” Mater. Sci. Eng., A 395, 281–287 (2005).CrossRef H. Fu, Q. Xiao, and Y. Li, “A study of the microstructures and properties of Fe–V–W–Mo alloy modified by rare earth,” Mater. Sci. Eng., A 395, 281–287 (2005).CrossRef
7.
go back to reference A. I. Khorev, “Basic study of alloying of titanium alloys with rare earth elements,” Vestn. Mashinostr., No. 11, 53–62 (2011). A. I. Khorev, “Basic study of alloying of titanium alloys with rare earth elements,” Vestn. Mashinostr., No. 11, 53–62 (2011).
8.
go back to reference I. A. Grushin, S. V. Skvortsova, K. S. Speranskii, A. A. Demakov, and N. A. Mamontova, “The effect of additional doping with gadolinium on the structure and properties of the experimental heat-resistant titanium alloy in cast and deformed states,” Titan, No. 1, 4–9 (2017). I. A. Grushin, S. V. Skvortsova, K. S. Speranskii, A. A. Demakov, and N. A. Mamontova, “The effect of additional doping with gadolinium on the structure and properties of the experimental heat-resistant titanium alloy in cast and deformed states,” Titan, No. 1, 4–9 (2017).
9.
go back to reference M. Zhao, Z. Zhou, Q. Ding, M. Zhong, and K. Arshad, “Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys,” J. Refract. Met. Hard Mater. 48, 19–23 (2015).CrossRef M. Zhao, Z. Zhou, Q. Ding, M. Zhong, and K. Arshad, “Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys,” J. Refract. Met. Hard Mater. 48, 19–23 (2015).CrossRef
10.
go back to reference J. Hieda, M. Niinomi, M. Nakai, K. Cho, and S. Nagai, “Effect of oxide particles formed through addition of rare-earth metal on mechanical properties of biomedical α-type titanium alloy,” Mater. Trans. 54, 1361–1367 (2013).CrossRef J. Hieda, M. Niinomi, M. Nakai, K. Cho, and S. Nagai, “Effect of oxide particles formed through addition of rare-earth metal on mechanical properties of biomedical α-type titanium alloy,” Mater. Trans. 54, 1361–1367 (2013).CrossRef
11.
go back to reference S. Skvortsova, I. Grushin, O. Umarova, and K. Speranskiy, “Effect of Rare-earth element addition on structure of heatresistant Ti–6.5Al–4Zr–2.5Sn–2.4V–1Nb–0.5Mo–0.2Si titanium alloy,” MATEC Web Conf. 114, 02008 (2017).CrossRef S. Skvortsova, I. Grushin, O. Umarova, and K. Speranskiy, “Effect of Rare-earth element addition on structure of heatresistant Ti–6.5Al–4Zr–2.5Sn–2.4V–1Nb–0.5Mo–0.2Si titanium alloy,” MATEC Web Conf. 114, 02008 (2017).CrossRef
12.
go back to reference V. A. Kaschuk and M. B. Svetlov, “The effect of small additions of rare earth metals and rhenium on the properties of titanium alloy VT5L,” Science. Thought, Kiev, 85–91 (1975). V. A. Kaschuk and M. B. Svetlov, “The effect of small additions of rare earth metals and rhenium on the properties of titanium alloy VT5L,” Science. Thought, Kiev, 85–91 (1975).
13.
go back to reference N. A. Nochovnaya, A. I. Khorev, and A. Yakovlev, “Prospects for alloying titanium alloys with rare earth elements,” Metalloved. Term. Obr. Met., No. 8, 18–23 (2013). N. A. Nochovnaya, A. I. Khorev, and A. Yakovlev, “Prospects for alloying titanium alloys with rare earth elements,” Metalloved. Term. Obr. Met., No. 8, 18–23 (2013).
14.
go back to reference S.V. Skvortsova, I. A. Grushin, K. A. Speranskiy, and E. V. Kavchenko, “Effect of heat treatment on the structure and properties of sheet semifinished products made of a heat-resistant alloy based on titanium and alloyed with rare-earth metal,” Russ. J. Non-Ferrous Met. 59, 157–162 (2018).CrossRef S.V. Skvortsova, I. A. Grushin, K. A. Speranskiy, and E. V. Kavchenko, “Effect of heat treatment on the structure and properties of sheet semifinished products made of a heat-resistant alloy based on titanium and alloyed with rare-earth metal,” Russ. J. Non-Ferrous Met. 59, 157–162 (2018).CrossRef
15.
go back to reference M. A. Popova, N. G. Rossina, N. A. Popov, and M. O. Leder, “Precipitation of oxide phases in titanium alloys with rare earth metals,” Lett. Mater. 7, 60–63 (2017).CrossRef M. A. Popova, N. G. Rossina, N. A. Popov, and M. O. Leder, “Precipitation of oxide phases in titanium alloys with rare earth metals,” Lett. Mater. 7, 60–63 (2017).CrossRef
16.
go back to reference B. G. Siemers, F. Brunke, J. Laukart, M. S. Hussain, J. Rösler, K. Saksl, B. Zahra, “Rare earth metals in titanium alloys—a systematic study,” Rare Earths 1, 281–292 (2012). B. G. Siemers, F. Brunke, J. Laukart, M. S. Hussain, J. Rösler, K. Saksl, B. Zahra, “Rare earth metals in titanium alloys—a systematic study,” Rare Earths 1, 281–292 (2012).
17.
go back to reference A. S. Bai, D. I. Lainer, E. N. Slesareva, and M. I. Tsypin, Oxidation of Titanium and Its Alloys (Metallurgiya, Moscow, 1970). A. S. Bai, D. I. Lainer, E. N. Slesareva, and M. I. Tsypin, Oxidation of Titanium and Its Alloys (Metallurgiya, Moscow, 1970).
18.
go back to reference A. P. Kovalev, “Kinetics and basic laws of gas saturation of titanium alloys,” Nauchnye trudy (Vestnik MATI), No. 4, 335–339 (2001). A. P. Kovalev, “Kinetics and basic laws of gas saturation of titanium alloys,” Nauchnye trudy (Vestnik MATI), No. 4, 335–339 (2001).
19.
go back to reference J. Dai, J. Zhu, C. Chen, and F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of Ti-alloys and Ti-aluminides: A review,” J. Alloys Compd., 685, 784–798 (2016).CrossRef J. Dai, J. Zhu, C. Chen, and F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of Ti-alloys and Ti-aluminides: A review,” J. Alloys Compd., 685, 784–798 (2016).CrossRef
20.
go back to reference S. Frangini and A. Mignone, “Various aspects of the air oxidation behavior of a Ti6Al4V alloy at temperatures in the range 600–700°C,” J. Mater. Sci. 29, 714–720 (1994).CrossRef S. Frangini and A. Mignone, “Various aspects of the air oxidation behavior of a Ti6Al4V alloy at temperatures in the range 600–700°C,” J. Mater. Sci. 29, 714–720 (1994).CrossRef
21.
go back to reference B. Sefer, Oxidation and Alpha-Case Phenomena in Titanium Alloys used in Aerospace Industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V (Luleå University of Technology, 2014). B. Sefer, Oxidation and Alpha-Case Phenomena in Titanium Alloys used in Aerospace Industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V (Luleå University of Technology, 2014).
22.
go back to reference R. Gaddam, B. Sefer, R. Pederson, and M. -L. Antti, “Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy,” J. Mater. Charact., No. 99, 166–174 (2015).CrossRef R. Gaddam, B. Sefer, R. Pederson, and M. -L. Antti, “Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy,” J. Mater. Charact., No. 99, 166–174 (2015).CrossRef
Metadata
Title
Analysis of the Microstructure, Phase Composition, and Oxidation Kinetics of Heat-Resistant Titanium Alloys with Gadolinium
Authors
A. A. Popov
M. O. Leder
M. C. Karabanalov
E. N. Popova
I. V. Narygina
Publication date
01-04-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 4/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20040110

Other articles of this Issue 4/2020

Physics of Metals and Metallography 4/2020 Go to the issue