Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 1/2021

19-05-2020 | Original Article

Analysis of the minimal model for the enthalpy relaxation and recovery in glass transition: application to constant-rate differential scanning calorimetry

Authors: Ivan Argatov, Vitaly Kocherbitov

Published in: Continuum Mechanics and Thermodynamics | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The so-called minimal model is formulated for describing the enthalpy relaxation and recovery in glass transition. The model is based on the Arrhenius law for the enthalpy relaxation, which uses two-dimensional parameters, namely the activation energy and the so-called pre-factor (relaxation time at relatively high temperature). A numerically effective exact analytical solution is obtained for the case of constant-rate differential scanning calorimetry. The developed model is analyzed according to the logic of the model itself without introducing additional simplifying assumptions of thermodynamic nature. For typical range of the model parameters, the resulting differential equation contains a large parameter, which offers an opportunity for the application of asymptotic and approximate techniques. A number of simple approximations have been provided for some thermodynamic quantities of interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hodge, I.M.: Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169(3), 211–266 (1994)CrossRefADS Hodge, I.M.: Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169(3), 211–266 (1994)CrossRefADS
2.
go back to reference Seibert, H., Scheffer, T., Diebels, S.: Thermomechanical characterisation of cellular rubber. Contin. Mech. Thermodyn. 28(5), 1495–1509 (2016)CrossRefADS Seibert, H., Scheffer, T., Diebels, S.: Thermomechanical characterisation of cellular rubber. Contin. Mech. Thermodyn. 28(5), 1495–1509 (2016)CrossRefADS
3.
go back to reference Leistner, C., Hartmann, S., Abliz, D., Ziegmann, G.: Modeling and simulation of the curing process of epoxy resins using finite elements. Contin. Mech. Thermodyn. 32, 327–350 (2020)MathSciNetCrossRefADS Leistner, C., Hartmann, S., Abliz, D., Ziegmann, G.: Modeling and simulation of the curing process of epoxy resins using finite elements. Contin. Mech. Thermodyn. 32, 327–350 (2020)MathSciNetCrossRefADS
4.
go back to reference Angell, C.A.: Perspective on the glass transition. J. Phys. Chem. Solids 49(8), 863–871 (1988)CrossRefADS Angell, C.A.: Perspective on the glass transition. J. Phys. Chem. Solids 49(8), 863–871 (1988)CrossRefADS
5.
6.
go back to reference Gutzow, I., Schmelzer, J.W.P., Petroff, B.: Phenomenological theories of glass transition: classical approaches, new solutions and perspectives. J. Non-Cryst. Solids 354(2–9), 311–324 (2008)CrossRefADS Gutzow, I., Schmelzer, J.W.P., Petroff, B.: Phenomenological theories of glass transition: classical approaches, new solutions and perspectives. J. Non-Cryst. Solids 354(2–9), 311–324 (2008)CrossRefADS
7.
go back to reference Bari, R., Simon, S.L.: Determination of the nonlinearity and activation energy parameters in the TNM model of structural recovery. J. Therm. Anal. Calorim. 131(1), 317–324 (2018)CrossRef Bari, R., Simon, S.L.: Determination of the nonlinearity and activation energy parameters in the TNM model of structural recovery. J. Therm. Anal. Calorim. 131(1), 317–324 (2018)CrossRef
8.
go back to reference Mauro, J.C., Mauro, Y.Z.: On the Prony series representation of stretched exponential relaxation. Physica A Stat. Mech. Appl. 506, 75–87 (2018)MathSciNetCrossRefADS Mauro, J.C., Mauro, Y.Z.: On the Prony series representation of stretched exponential relaxation. Physica A Stat. Mech. Appl. 506, 75–87 (2018)MathSciNetCrossRefADS
9.
go back to reference Flügel, K., Hennig, R., Thommes, M.: Determination of the structural relaxation enthalpy using a mathematical approach. J. Pharmaceut. Sci. 108(11), 3675–3683 (2019) Flügel, K., Hennig, R., Thommes, M.: Determination of the structural relaxation enthalpy using a mathematical approach. J. Pharmaceut. Sci. 108(11), 3675–3683 (2019)
10.
go back to reference Lion, A., Yagimli, B.: Differential scanning calorimetry-continuum mechanical considerations with focus to the polymerisation of adhesives. Zeitschrift für Angewandte Mathematik und Mechanik: Appl. Math. Mech. 88(5), 388–402 (2008)CrossRefADS Lion, A., Yagimli, B.: Differential scanning calorimetry-continuum mechanical considerations with focus to the polymerisation of adhesives. Zeitschrift für Angewandte Mathematik und Mechanik: Appl. Math. Mech. 88(5), 388–402 (2008)CrossRefADS
11.
go back to reference Ferhoum, R., Aberkane, M., Ouali, M.O.: Distribution of nonliner relaxation (DNLR) approach of the annealing effects in semicristalline polymers: structure-property relation for high-density polyethylene (HDPE). Contin. Mech. Thermodyn. 26(3), 373–385 (2014)MathSciNetCrossRefADS Ferhoum, R., Aberkane, M., Ouali, M.O.: Distribution of nonliner relaxation (DNLR) approach of the annealing effects in semicristalline polymers: structure-property relation for high-density polyethylene (HDPE). Contin. Mech. Thermodyn. 26(3), 373–385 (2014)MathSciNetCrossRefADS
12.
go back to reference Jennrich, R., Lion, A., Johlitz, M., Ernst, S., Dilger, K., Stammen, E.: Thermomechanical characterization and modeling of fast-curing polyurethane adhesives. Contin. Mech. Thermodyn. 32(2), 421–432 (2020)MathSciNetCrossRefADS Jennrich, R., Lion, A., Johlitz, M., Ernst, S., Dilger, K., Stammen, E.: Thermomechanical characterization and modeling of fast-curing polyurethane adhesives. Contin. Mech. Thermodyn. 32(2), 421–432 (2020)MathSciNetCrossRefADS
13.
go back to reference Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. Ed. 17(7), 1097–1162 (1979)CrossRefADS Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. Polym. Phys. Ed. 17(7), 1097–1162 (1979)CrossRefADS
14.
go back to reference Tool, A.Q.: Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29(9), 240–253 (1946)CrossRef Tool, A.Q.: Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29(9), 240–253 (1946)CrossRef
15.
go back to reference Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. 54(10), 491–498 (1971)CrossRef Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. 54(10), 491–498 (1971)CrossRef
16.
go back to reference Moynihan, C.T., Easteal, A.J., DeBolt, M.A., Tucker, J.: Analysis of structural relaxation in glass using rate heating data. J. Am. Ceram. Soc. 59, 12–16 (1976)CrossRef Moynihan, C.T., Easteal, A.J., DeBolt, M.A., Tucker, J.: Analysis of structural relaxation in glass using rate heating data. J. Am. Ceram. Soc. 59, 12–16 (1976)CrossRef
17.
go back to reference Fan, M., Zhang, K., Schroers, J., Shattuck, M.D., O’Hern, C.S.: Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Phys. Rev. E 96(3), 032602 (2017)CrossRefADS Fan, M., Zhang, K., Schroers, J., Shattuck, M.D., O’Hern, C.S.: Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Phys. Rev. E 96(3), 032602 (2017)CrossRefADS
18.
go back to reference Kohlrausch, R.: Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik 167(2), 179–214 (1854)CrossRefADS Kohlrausch, R.: Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik 167(2), 179–214 (1854)CrossRefADS
19.
go back to reference Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)CrossRef Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)CrossRef
20.
go back to reference Moynihan, C.T., Easteal, A.J., Wilder, J., Tucker, J.: Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78(26), 2673–2677 (1974)CrossRef Moynihan, C.T., Easteal, A.J., Wilder, J., Tucker, J.: Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78(26), 2673–2677 (1974)CrossRef
21.
go back to reference Schmelzer, J.W.P., Tropin, T.V.: Dependence of the width of the glass transition interval on cooling and heating rates. J. Chem. Phys. 138(3), 034507 (2013)CrossRefADS Schmelzer, J.W.P., Tropin, T.V.: Dependence of the width of the glass transition interval on cooling and heating rates. J. Chem. Phys. 138(3), 034507 (2013)CrossRefADS
22.
go back to reference Gutzow, I., Ilieva, D., Babalievski, F., Yamakov, V.: Thermodynamics and kinetics of the glass transition: A generic geometric approach. J. Chem. Phys. 112(24), 10941–10948 (2000)CrossRefADS Gutzow, I., Ilieva, D., Babalievski, F., Yamakov, V.: Thermodynamics and kinetics of the glass transition: A generic geometric approach. J. Chem. Phys. 112(24), 10941–10948 (2000)CrossRefADS
23.
go back to reference Gutzow, I., Yamakov, V., Ilieva, D., Babalievski, Ph, Pye, L.D.: Generic phenomenological theory of vitrification. Glass Phys. Chem. 27(2), 148–159 (2001)CrossRef Gutzow, I., Yamakov, V., Ilieva, D., Babalievski, Ph, Pye, L.D.: Generic phenomenological theory of vitrification. Glass Phys. Chem. 27(2), 148–159 (2001)CrossRef
24.
go back to reference Volkenshtein, M.V., Ptitsyn, O.B.: The relaxation theory of glass transition. Dokl. Phys. 103(5), 795–798 (1955) Volkenshtein, M.V., Ptitsyn, O.B.: The relaxation theory of glass transition. Dokl. Phys. 103(5), 795–798 (1955)
25.
go back to reference Vol’kenshtein, M.V., Ptitsyn, O.B.: Relaxation theory of vitrification. Solution of basic equation and its studying. Russ. J. Appl. Phys. 26(10), 2204–2222 (1956) Vol’kenshtein, M.V., Ptitsyn, O.B.: Relaxation theory of vitrification. Solution of basic equation and its studying. Russ. J. Appl. Phys. 26(10), 2204–2222 (1956)
26.
go back to reference Sanditov, D.S., Ojovan, M.I.: Relaxation aspects of the liquid-glass transition. Physics-Uspekhi 62(2), 111 (2019)CrossRefADS Sanditov, D.S., Ojovan, M.I.: Relaxation aspects of the liquid-glass transition. Physics-Uspekhi 62(2), 111 (2019)CrossRefADS
27.
go back to reference Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. Ser. A 145(855), 699–730 (1934)CrossRefADS Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. Ser. A 145(855), 699–730 (1934)CrossRefADS
28.
go back to reference Wunderlich, B., Bodily, D.M., Kaplan, M.H.: Theory and measurements of the glass-transformation interval of polystyrene. J. Appl. Phys. 35(1), 95–102 (1964)CrossRefADS Wunderlich, B., Bodily, D.M., Kaplan, M.H.: Theory and measurements of the glass-transformation interval of polystyrene. J. Appl. Phys. 35(1), 95–102 (1964)CrossRefADS
29.
go back to reference Fedoryuk, M.V.: Asymptotics: Integrals and Series (In Russian). Nauka, Moscow (1987)MATH Fedoryuk, M.V.: Asymptotics: Integrals and Series (In Russian). Nauka, Moscow (1987)MATH
30.
go back to reference Tropin, T.V., Schmelzer, J.W., Aksenov, V.L.: Modern aspects of the kinetic theory of glass transition. Physics-Uspekhi 59(1), 42 (2016)CrossRefADS Tropin, T.V., Schmelzer, J.W., Aksenov, V.L.: Modern aspects of the kinetic theory of glass transition. Physics-Uspekhi 59(1), 42 (2016)CrossRefADS
31.
go back to reference Sanditov, D.S., Ojovan, M.I.: On relaxation nature of glass transition in amorphous materials. Physica B: Condensed Matter 523, 96–113 (2017)CrossRefADS Sanditov, D.S., Ojovan, M.I.: On relaxation nature of glass transition in amorphous materials. Physica B: Condensed Matter 523, 96–113 (2017)CrossRefADS
32.
go back to reference Doyle, C.D.: Series approximations to the equation of thermogravimetric data. Nature 207(4994), 290 (1965)CrossRefADS Doyle, C.D.: Series approximations to the equation of thermogravimetric data. Nature 207(4994), 290 (1965)CrossRefADS
33.
go back to reference Flynn, J.H., Wall, L.A.: General treatment of the thermogravimetry of polymers. J. Res. Natl. Bureau Stand. 70(6), 487–523 (1966)CrossRef Flynn, J.H., Wall, L.A.: General treatment of the thermogravimetry of polymers. J. Res. Natl. Bureau Stand. 70(6), 487–523 (1966)CrossRef
34.
go back to reference Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 2(3), 301–324 (1970)CrossRef Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 2(3), 301–324 (1970)CrossRef
Metadata
Title
Analysis of the minimal model for the enthalpy relaxation and recovery in glass transition: application to constant-rate differential scanning calorimetry
Authors
Ivan Argatov
Vitaly Kocherbitov
Publication date
19-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 1/2021
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00891-3

Other articles of this Issue 1/2021

Continuum Mechanics and Thermodynamics 1/2021 Go to the issue

Premium Partners