Skip to main content
Top
Published in: Fluid Dynamics 2/2021

01-03-2021

Analysis of the Simulation Conditions of the Aerodynamic Heating in Subsonic High-Enthalpy Air Jets from the VGU-4 HF Plasmatron

Authors: A. F. Kolesnikov, S. L. Shchelokov

Published in: Fluid Dynamics | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

The domain in the “total enthalpy–stagnation pressure” coordinates and, correspondingly, the ranges of the velocity and altitude of the atmospheric entry of a body with the nose bluntness radius of 1 m, for which the conditions of the local modeling of heat transfer to the stagnation point are fulfilled in subsonic high-enthalpy air jets flowing around cylindrical flat-nosed models, 20 to 140 mm in diameter, are established. The region of the trajectory of the European experimental IXV vehicle entry into the atmosphere, in which the local modeling of the convective heating of the vicinity of its nose, assuming 1 m in radius, is possible in the VGU-4 HF plasmatron, is determined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. F. Kolesnikov and M. I. Yakushin, “Determination of the effective probabilities of heterogeneous atom recombination from the heat fluxes to a surface in a dissociated-air flow,” Mat. Model 1(3), 44–60 (1989).MathSciNetMATH A. F. Kolesnikov and M. I. Yakushin, “Determination of the effective probabilities of heterogeneous atom recombination from the heat fluxes to a surface in a dissociated-air flow,” Mat. Model 1(3), 44–60 (1989).MathSciNetMATH
2.
go back to reference S. A. Vasil’evskii, A. F. Kolesnikov, and M. I. Yakushin, “Determination of the effective probabilities of the heterogeneous recombination of atoms, when heat flow is influenced by gas-phase reactions,” High Temperature 29(3), 411–419 (1991). S. A. Vasil’evskii, A. F. Kolesnikov, and M. I. Yakushin, “Determination of the effective probabilities of the heterogeneous recombination of atoms, when heat flow is influenced by gas-phase reactions,” High Temperature 29(3), 411–419 (1991).
3.
go back to reference A. N. Gordeev, A. F. Kolesnikov, and M. I. Yakushin, “An induction plasma application to “Buran’s” heat protection tiles ground tests,” SAMPE J. 28(3), 27–31 (1992). A. N. Gordeev, A. F. Kolesnikov, and M. I. Yakushin, “An induction plasma application to “Buran’s” heat protection tiles ground tests,” SAMPE J. 28(3), 27–31 (1992).
4.
go back to reference A. N. Gordeev and A. F. Kolesnikov, “Induction plasmatrons of VGU series,” in: Topical Problems of Mechanics, Physico-Chemical Mechanics of Liquids and Gases (Nauka, Moscow, 2010), pp. 151–177 [in Russian]. A. N. Gordeev and A. F. Kolesnikov, “Induction plasmatrons of VGU series,” in: Topical Problems of Mechanics, Physico-Chemical Mechanics of Liquids and Gases (Nauka, Moscow, 2010), pp. 151–177 [in Russian].
5.
go back to reference A. F. Kolesnikov, I. S. Pershin, S. A. Vasil’evskii, and M. I. Yakushin, “Study of quartz surface catalycity in dissociated carbon dioxide subsonic flows,” J. Spacecraft Rockets 37(5), 573–579 (2000).CrossRef A. F. Kolesnikov, I. S. Pershin, S. A. Vasil’evskii, and M. I. Yakushin, “Study of quartz surface catalycity in dissociated carbon dioxide subsonic flows,” J. Spacecraft Rockets 37(5), 573–579 (2000).CrossRef
6.
go back to reference A. F. Kolesnikov, A. N. Gordeev, and S. A. Vasil’evskii, “Effects of catalytic recombination on the surfaces of metals and quartz for the conditions of entry into the Martian atmosphere,” High Temperature 54(1), 29–37 (2016).CrossRef A. F. Kolesnikov, A. N. Gordeev, and S. A. Vasil’evskii, “Effects of catalytic recombination on the surfaces of metals and quartz for the conditions of entry into the Martian atmosphere,” High Temperature 54(1), 29–37 (2016).CrossRef
7.
go back to reference G. N. Zalogin, B. A. Zemlyanskii, V. B. Knot’ko, L. A. Kuz’min, V. V. Lunev, I. N. Murzinov, and A. N. Rumynskii, “High-frequency plasmatron–a setup for investigations of aerophysical problems using high-enthalpy gas flows,” Kosmonavtika Raketostroenie No. 2, 22–32 (1994). G. N. Zalogin, B. A. Zemlyanskii, V. B. Knot’ko, L. A. Kuz’min, V. V. Lunev, I. N. Murzinov, and A. N. Rumynskii, “High-frequency plasmatron–a setup for investigations of aerophysical problems using high-enthalpy gas flows,” Kosmonavtika Raketostroenie No. 2, 22–32 (1994).
8.
go back to reference V. I. Vlasov, G. N. Zalogin, B. A. Zemlyanskii, and V. B. Knot’ko, “Methods and results of an experimental investigation of the catalytic activity of materials at high temperatures,” Fluid Dynamics 38(5), 815–825 (2003).ADSCrossRef V. I. Vlasov, G. N. Zalogin, B. A. Zemlyanskii, and V. B. Knot’ko, “Methods and results of an experimental investigation of the catalytic activity of materials at high temperatures,” Fluid Dynamics 38(5), 815–825 (2003).ADSCrossRef
9.
go back to reference B. E. Zhestkov, “Investigation of thermochemical stability of thermal protection materials,” TsAGI Sci. J. 45(8), 781–802 (2014). B. E. Zhestkov, “Investigation of thermochemical stability of thermal protection materials,” TsAGI Sci. J. 45(8), 781–802 (2014).
10.
go back to reference B. Bottin, O. Chazot, M. Carbonaro, V. Van Der Haegen, and S. Paris, “The VKI plasmatron characteristics and performance,” in: Measurement Techniques for High Enthalpy and Plasma Flows, NATO-RTO-EN-8 (1999). B. Bottin, O. Chazot, M. Carbonaro, V. Van Der Haegen, and S. Paris, “The VKI plasmatron characteristics and performance,” in: Measurement Techniques for High Enthalpy and Plasma Flows, NATO-RTO-EN-8 (1999).
11.
go back to reference B. Bottin, M. Carbonaro, V. Van Der Haegen, and S. Paris, “Predicted and measured capability of the 1.2 MW plasmatron regarding re-entry simulation,” in: Proc. Third Europ. Symp. on Aerothermodynamics for Space Vehicles. ESTEC, Noordwijk, The Netherlands, November 24–26, 1998, ESA SP-426 (1999), pp. 553–560.ADS B. Bottin, M. Carbonaro, V. Van Der Haegen, and S. Paris, “Predicted and measured capability of the 1.2 MW plasmatron regarding re-entry simulation,” in: Proc. Third Europ. Symp. on Aerothermodynamics for Space Vehicles. ESTEC, Noordwijk, The Netherlands, November 24–26, 1998, ESA SP-426 (1999), pp. 553–560.ADS
12.
go back to reference O. Chazot, H. V. Krassilchikoff, and J. Thomel, “TPS ground testing in plasma wind tunnel for catalytic properties determination,” AIAA Paper 2008-1252 (2008). O. Chazot, H. V. Krassilchikoff, and J. Thomel, “TPS ground testing in plasma wind tunnel for catalytic properties determination,” AIAA Paper 2008-1252 (2008).
13.
go back to reference V. Auweter-Kurtz, H. L. Kurtz, and S. Laure, “Plasma generators for re-entry simulation,” J. Propulsion Power 12(6), 1053–1061 (1996).CrossRef V. Auweter-Kurtz, H. L. Kurtz, and S. Laure, “Plasma generators for re-entry simulation,” J. Propulsion Power 12(6), 1053–1061 (1996).CrossRef
14.
go back to reference G. Herdrich, M. Auweter-Kurtz, H. Kurtz, T. Laux, and M. Winter, “Operational behavior of inductively heated plasma source IPG-3 for entry simulations,” J. Thermophysics Heat Transfer 16(3), 440–449 (2002). G. Herdrich, M. Auweter-Kurtz, H. Kurtz, T. Laux, and M. Winter, “Operational behavior of inductively heated plasma source IPG-3 for entry simulations,” J. Thermophysics Heat Transfer 16(3), 440–449 (2002).
15.
go back to reference B. Massuti-Ballester, S. Pidan, G. Herdrich, and M. Fertig, “Recent catalysis measurements at IRS,” Adv. Space Res. 56(4), 742–765 (2015).CrossRef B. Massuti-Ballester, S. Pidan, G. Herdrich, and M. Fertig, “Recent catalysis measurements at IRS,” Adv. Space Res. 56(4), 742–765 (2015).CrossRef
16.
go back to reference A. Bourdon, A. Bultel, A. Desportes, B. van Ootegem, and P. Vervisch, “Catalycity studies of TPS in a 90 kW plasmatron at CORIA,” Presented at the 2nd International Symposium “Atmospheric Reentry Vehicles and Systems,” Arcachon (France), March 26–29, 2001. A. Bourdon, A. Bultel, A. Desportes, B. van Ootegem, and P. Vervisch, “Catalycity studies of TPS in a 90 kW plasmatron at CORIA,” Presented at the 2nd International Symposium “Atmospheric Reentry Vehicles and Systems,” Arcachon (France), March 26–29, 2001.
17.
go back to reference M. Dougherty, W. Owens, J. Meyers, and D. Fletcher, “Investigations of surface-catalyzed recombination reactions in Mars atmosphere,” In: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 4–7, 2011, Orlando, Florida. M. Dougherty, W. Owens, J. Meyers, and D. Fletcher, “Investigations of surface-catalyzed recombination reactions in Mars atmosphere,” In: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 4–7, 2011, Orlando, Florida.
18.
go back to reference D. G. Fletcher and J. M. Meyers, “Surface catalyzed reaction efficiencies in oxygen plasmas from laser induced fluorescence measurements,” J. Thermophysics Heat Transfer 31(2), 410–420 (2017).CrossRef D. G. Fletcher and J. M. Meyers, “Surface catalyzed reaction efficiencies in oxygen plasmas from laser induced fluorescence measurements,” J. Thermophysics Heat Transfer 31(2), 410–420 (2017).CrossRef
19.
go back to reference A. F. Kolesnikov, “Conditions of simulation of stagnation point heat transfer from a high-enthalpy flow,” Fluid Dynamics 28(1), 131–137 (1993).ADSCrossRef A. F. Kolesnikov, “Conditions of simulation of stagnation point heat transfer from a high-enthalpy flow,” Fluid Dynamics 28(1), 131–137 (1993).ADSCrossRef
20.
go back to reference A. F. Kolesnikov, “Local similarity conditions of the thermochemical interaction between high-enthalpy gas flows and an undestructible surface,” High Temperature 52(1), 110–116 (2014).CrossRef A. F. Kolesnikov, “Local similarity conditions of the thermochemical interaction between high-enthalpy gas flows and an undestructible surface,” High Temperature 52(1), 110–116 (2014).CrossRef
21.
go back to reference A. F. Kolesnikov, A. N. Gordeev, and S. A. Vasil’evskii, “Modeling the stagnation point heating and determining the catalytic activity for the re-entry EXPERT vehicle,” in: Physico-Chemical Kinetics in Gasdynamics. Vol. 9 (2010); http://chemphys.edu.ru/issues/2010-9/articles/123/ [in Russian]. A. F. Kolesnikov, A. N. Gordeev, and S. A. Vasil’evskii, “Modeling the stagnation point heating and determining the catalytic activity for the re-entry EXPERT vehicle,” in: Physico-Chemical Kinetics in Gasdynamics. Vol. 9 (2010); http://​chemphys.​edu.​ru/​issues/​2010-9/​articles/​123/​ [in Russian].
22.
go back to reference S. A. Vasil’evskii, A. N. Gordeev, and A. F. Kolesnikov, “Local modeling of the aerodynamic heating to the blunt body surface in subsonic high-enthalpy flow. Theory and experiment on high-frequency plasmatron,” Fluid Dynamics 52(1), 158–164 (2017).CrossRef S. A. Vasil’evskii, A. N. Gordeev, and A. F. Kolesnikov, “Local modeling of the aerodynamic heating to the blunt body surface in subsonic high-enthalpy flow. Theory and experiment on high-frequency plasmatron,” Fluid Dynamics 52(1), 158–164 (2017).CrossRef
23.
go back to reference A. F. Kolesnikov, A. N. Gordeev, S. A. Vasil’evskii, and E. S. Tepteeva, “The effect of the geometry of the discharge channel in a high-frequency plasmatron in high-enthalpy subsonic air jets,” High Temperature 57(4), 469–476 (2019).CrossRef A. F. Kolesnikov, A. N. Gordeev, S. A. Vasil’evskii, and E. S. Tepteeva, “The effect of the geometry of the discharge channel in a high-frequency plasmatron in high-enthalpy subsonic air jets,” High Temperature 57(4), 469–476 (2019).CrossRef
24.
go back to reference S. A. Vasil’evskii, A. N. Gordeev, and A. F. Kolesnikov, “Heat transfer and thermophysics in subsonic dissociated-air jets in a high-frequency induction plasmatron,” Fluid Dynamics 54(3), 389–403 (2019).CrossRef S. A. Vasil’evskii, A. N. Gordeev, and A. F. Kolesnikov, “Heat transfer and thermophysics in subsonic dissociated-air jets in a high-frequency induction plasmatron,” Fluid Dynamics 54(3), 389–403 (2019).CrossRef
25.
go back to reference A. Viviani and G. Pezzella, Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles (Springer Aerospace Technology, 2015).CrossRef A. Viviani and G. Pezzella, Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles (Springer Aerospace Technology, 2015).CrossRef
Metadata
Title
Analysis of the Simulation Conditions of the Aerodynamic Heating in Subsonic High-Enthalpy Air Jets from the VGU-4 HF Plasmatron
Authors
A. F. Kolesnikov
S. L. Shchelokov
Publication date
01-03-2021
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 2/2021
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821020063

Other articles of this Issue 2/2021

Fluid Dynamics 2/2021 Go to the issue

Premium Partners