Skip to main content
Top

2021 | OriginalPaper | Chapter

Analysis on Development of Beeswax as Phase Change Material for Thermal Energy Storage

Authors : Durgesh Kumar Mishra, Sumit Bhowmik, Krishna Murari Pandey

Published in: Advances in Production and Industrial Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current review article is focused on the development of beeswax as phase change material (PCM) for thermal energy storage. Beeswax is an organic non-paraffin PCM, which is suitable for heat energy storage. But the main hamper of the beeswax during energy storage is less thermal conductivity and leakage during phase transformation. So, the researchers have been started attacking to resolve this kind of problem. During this fashion they were started to add high thermal conductivity particles with beeswax to improve thermal conductivity and at the same time leakage prevention porous material to prevent leakage during phase transformation. During the review, it is established that expanded graphite, graphene, carbon nanotube, expanded perlite carbon fiber, copper oxide, polymer, dammer gum, and tallow were used for conductivity enhancement and leakage preventing agent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef
2.
go back to reference Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ (2017) Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev 74:26–50CrossRef Ibrahim NI, Al-Sulaiman FA, Rahman S, Yilbas BS, Sahin AZ (2017) Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renew Sustain Energy Rev 74:26–50CrossRef
3.
go back to reference Bhowmik C, Bhowmik S, Ray A, Pandey KM (2017) Optimal green energy planning for sustainable development: a review. Renew Sustain Energy Rev 71:796–813CrossRef Bhowmik C, Bhowmik S, Ray A, Pandey KM (2017) Optimal green energy planning for sustainable development: a review. Renew Sustain Energy Rev 71:796–813CrossRef
4.
go back to reference Safari A, Saidur R, Sulaiman FA, Xu Y, Dong J (2017) A review on super cooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev 70:905–919CrossRef Safari A, Saidur R, Sulaiman FA, Xu Y, Dong J (2017) A review on super cooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev 70:905–919CrossRef
5.
go back to reference Li M, Wu Z (2012) A review of intercalation composite phase change material: preparation, structure and properties. Renew Sustain Energy Rev 16(4):2094–2101CrossRef Li M, Wu Z (2012) A review of intercalation composite phase change material: preparation, structure and properties. Renew Sustain Energy Rev 16(4):2094–2101CrossRef
6.
go back to reference Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158CrossRef Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158CrossRef
7.
go back to reference Chandel SS, Agarwal T (2017) Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev 67:581–596CrossRef Chandel SS, Agarwal T (2017) Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev 67:581–596CrossRef
8.
go back to reference Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742CrossRef Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742CrossRef
9.
go back to reference Zhang P, Xiao X, Ma ZW (2016) A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy 165:472–510CrossRef Zhang P, Xiao X, Ma ZW (2016) A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy 165:472–510CrossRef
10.
go back to reference Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yılbaş BS, Sahin AZ (2017) A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 70:1072–1089CrossRef Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yılbaş BS, Sahin AZ (2017) A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 70:1072–1089CrossRef
11.
go back to reference Quanying Y, Chen L, Lin Z (2008) Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall. Sol Energy Mater Soar Cells 92(11):1526–1532CrossRef Quanying Y, Chen L, Lin Z (2008) Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall. Sol Energy Mater Soar Cells 92(11):1526–1532CrossRef
12.
go back to reference Bashirnezhad K, Kebriyaee SA, Moosavi A (2018) The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material. Sol Energy 169:411–423CrossRef Bashirnezhad K, Kebriyaee SA, Moosavi A (2018) The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material. Sol Energy 169:411–423CrossRef
13.
go back to reference Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–1366 Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–1366
14.
go back to reference Jackson MA, Eller FJ (2006) Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide. J Supercrit Fluids 37(2):173–177CrossRef Jackson MA, Eller FJ (2006) Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide. J Supercrit Fluids 37(2):173–177CrossRef
15.
go back to reference Dinker A, Agarwal M, Agarwal GD (2017a) Experimental study on thermal performance of Beeswax as thermal storage material. Mater Today Proc 4(9):10529–10533CrossRef Dinker A, Agarwal M, Agarwal GD (2017a) Experimental study on thermal performance of Beeswax as thermal storage material. Mater Today Proc 4(9):10529–10533CrossRef
16.
go back to reference Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef
17.
go back to reference Dinker A, Agarwal M, Agarwal GD (2017b) Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material. Exp Heat Transf 30(2):139–150CrossRef Dinker A, Agarwal M, Agarwal GD (2017b) Preparation, characterization, and performance study of beeswax/expanded graphite composite as thermal storage material. Exp Heat Transf 30(2):139–150CrossRef
18.
go back to reference Dinker A, Agarwal M, Agarwal GD (2018) Experimental performance analysis of beeswax/expanded graphite composite for thermal energy storage in a shell and tube unit. Int J Green Energy 15(11):585–595CrossRef Dinker A, Agarwal M, Agarwal GD (2018) Experimental performance analysis of beeswax/expanded graphite composite for thermal energy storage in a shell and tube unit. Int J Green Energy 15(11):585–595CrossRef
19.
go back to reference Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TM (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112:273–280CrossRef Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TM (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112:273–280CrossRef
20.
go back to reference Cheng F, Wen R, Zhang X, Huang Z, Huang Y, Fang M, Liu YG, Wu X, Min X (2018) Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Compos A Appl Sci Manuf 107:180–188CrossRef Cheng F, Wen R, Zhang X, Huang Z, Huang Y, Fang M, Liu YG, Wu X, Min X (2018) Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Compos A Appl Sci Manuf 107:180–188CrossRef
21.
go back to reference Putra N, Rawi S, Amin M, Kusrini E, Kosasih EA, Mahlia TMI (2019) Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. J Energy Storage 21:32–39CrossRef Putra N, Rawi S, Amin M, Kusrini E, Kosasih EA, Mahlia TMI (2019) Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. J Energy Storage 21:32–39CrossRef
22.
go back to reference Rawi S, Amin M, Kusrini E, Putra N (2018) Characterization of shape-stabilized phase change material using beeswax and functionalized multi-walled carbon nanotubes. In: IOP conference series: earth and environmental science, vol 105, p 012042 Rawi S, Amin M, Kusrini E, Putra N (2018) Characterization of shape-stabilized phase change material using beeswax and functionalized multi-walled carbon nanotubes. In: IOP conference series: earth and environmental science, vol 105, p 012042
23.
go back to reference Putra N, Prawiro E, Amin M (2016) Thermal properties of beeswax/CuO nano phase-change material used for thermal energy storage. Int J Technol 7(2):244–253CrossRef Putra N, Prawiro E, Amin M (2016) Thermal properties of beeswax/CuO nano phase-change material used for thermal energy storage. Int J Technol 7(2):244–253CrossRef
24.
go back to reference Naderizadeh S, Heredia-Guerrero JA, Caputo G, Grasselli S, Malchiodi A, Athanassiou A, Bayer IS (2019) Superhydrophobic coatings from Beeswax-in-water emulsions with latent heat storage capability. Adv Mater Interfaces 6(5):1801782CrossRef Naderizadeh S, Heredia-Guerrero JA, Caputo G, Grasselli S, Malchiodi A, Athanassiou A, Bayer IS (2019) Superhydrophobic coatings from Beeswax-in-water emulsions with latent heat storage capability. Adv Mater Interfaces 6(5):1801782CrossRef
25.
go back to reference Umar H, Rizal S, Riza M, Mahlia TMI (2018) Mechanical properties of concrete containing beeswax/dammar gum as phase change material for thermal energy storage. AIMS Energy Umar H, Rizal S, Riza M, Mahlia TMI (2018) Mechanical properties of concrete containing beeswax/dammar gum as phase change material for thermal energy storage. AIMS Energy
Metadata
Title
Analysis on Development of Beeswax as Phase Change Material for Thermal Energy Storage
Authors
Durgesh Kumar Mishra
Sumit Bhowmik
Krishna Murari Pandey
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5519-0_29

Premium Partners