Skip to main content
Top

2023 | OriginalPaper | Chapter

Analysis on the Second Ignition Phenomenon Induced by Shock Wave Focusing in a 90° Conical Reflector

Authors : Yuanchang Li, Bo Zhang

Published in: Proceedings of the International Conference on Aerospace System Science and Engineering 2021

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The shock wave focusing is a promising detonation initiation method that can greatly shorten the deflagration to detonation transition distance. In this work, we conducted experiments under the constant operating pressure in a conical reflector to explore the shock focusing induced ignition in CH4/O2/Ar mixture. The second ignition is formed in the conical reflector under certain conditions. The introduction of the second ignition brings a higher pressure peak after ignition. By adjusting the incident shock intensity, three modes of ignition are found in the conical reflex. The pressure peak of combustion and the time to induce the second ignition are systematically investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee J (2008) The detonation phenomenon. Cambridge University Press Lee J (2008) The detonation phenomenon. Cambridge University Press
2.
go back to reference Dorofeev S, Sidorov V, Kuznetsov M, Matsukov I, Alekseev V (2000) Effect of scale on the onset of detonations. Shock Waves 10:137–149CrossRef Dorofeev S, Sidorov V, Kuznetsov M, Matsukov I, Alekseev V (2000) Effect of scale on the onset of detonations. Shock Waves 10:137–149CrossRef
3.
go back to reference Lee JHS, Jesuthasan A, Ng HD (2013) Near limit behavior of the detonation velocity. Proc Combust Inst 34(2):1957–1963CrossRef Lee JHS, Jesuthasan A, Ng HD (2013) Near limit behavior of the detonation velocity. Proc Combust Inst 34(2):1957–1963CrossRef
4.
go back to reference Ciccarelli G, Dorofeev S (2008) Flame acceleration and transition to detonation in ducts. Prog Energy Combust Sci 34(4):499–550CrossRef Ciccarelli G, Dorofeev S (2008) Flame acceleration and transition to detonation in ducts. Prog Energy Combust Sci 34(4):499–550CrossRef
5.
go back to reference Zhang B, Liu H (2017) The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture. Combust Flame 182:279–287CrossRef Zhang B, Liu H (2017) The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane–oxygen mixture. Combust Flame 182:279–287CrossRef
6.
go back to reference Zhang B (2016) The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combust Flame 169:333–339CrossRef Zhang B (2016) The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combust Flame 169:333–339CrossRef
7.
go back to reference Zhang B, Ng HD, Lee JHS (2012) Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations. Shock Waves 22(3):275–9 Zhang B, Ng HD, Lee JHS (2012) Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations. Shock Waves 22(3):275–9
8.
go back to reference Maxwell B, Bhattacharjee R, Lau-Chapdelaine SSM, Falle S, Sharpe G, Radulescu M (2016) Influence of turbulent fluctuations on detonation propagation. J Fluid Mech 818 Maxwell B, Bhattacharjee R, Lau-Chapdelaine SSM, Falle S, Sharpe G, Radulescu M (2016) Influence of turbulent fluctuations on detonation propagation. J Fluid Mech 818
9.
go back to reference Kellenberger M, Ciccarelli G (2015) Propagation mechanisms of supersonic combustion waves. Proc Combust Inst 35(2):2109–2116CrossRef Kellenberger M, Ciccarelli G (2015) Propagation mechanisms of supersonic combustion waves. Proc Combust Inst 35(2):2109–2116CrossRef
10.
go back to reference Wang L, Ma H, Shen Z, Pan J (2019) Effects of bluff bodies on the propagation behaviors of gaseous detonation. Combust Flame 201:118–128CrossRef Wang L, Ma H, Shen Z, Pan J (2019) Effects of bluff bodies on the propagation behaviors of gaseous detonation. Combust Flame 201:118–128CrossRef
11.
go back to reference Wang L, Ma H, Shen Z, Xue B, Cheng Y, Fan Z (2017) Experimental investigation of methane-oxygen detonation propagation in tubes. Appl Therm Eng 123:1300–1307CrossRef Wang L, Ma H, Shen Z, Xue B, Cheng Y, Fan Z (2017) Experimental investigation of methane-oxygen detonation propagation in tubes. Appl Therm Eng 123:1300–1307CrossRef
12.
go back to reference Wang L, Ma H, Yongxing D, Shen Z (2019) On the detonation behavior of methane-oxygen in a round tube filled with orifice plates. Process Saf Environ Prot 121:263–270CrossRef Wang L, Ma H, Yongxing D, Shen Z (2019) On the detonation behavior of methane-oxygen in a round tube filled with orifice plates. Process Saf Environ Prot 121:263–270CrossRef
13.
go back to reference Hutchins TE, Metghalchi M (2003) Energy and exergy analyses of the pulse detonation engine. J Eng Gas Turbines Power 125(4):1075–1080CrossRef Hutchins TE, Metghalchi M (2003) Energy and exergy analyses of the pulse detonation engine. J Eng Gas Turbines Power 125(4):1075–1080CrossRef
14.
go back to reference Kailasanath K (2003) Recent developments in the research on pulse detonation engines. AIAA J 41(2):145–159CrossRef Kailasanath K (2003) Recent developments in the research on pulse detonation engines. AIAA J 41(2):145–159CrossRef
15.
go back to reference Bellini R, Lu FK (2010) Exergy analysis of a pulse detonation power device. J Propuls Power 26(4):875–8 Bellini R, Lu FK (2010) Exergy analysis of a pulse detonation power device. J Propuls Power 26(4):875–8
16.
go back to reference Ostrander M, Hyde J, Young M, Kissinger R, Pratt D (1987) Standing oblique detonation wave engine performance. In: Joint propulsion conference Ostrander M, Hyde J, Young M, Kissinger R, Pratt D (1987) Standing oblique detonation wave engine performance. In: Joint propulsion conference
17.
go back to reference Ng HD (2018) Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Phys Fluids 30:106110 Ng HD (2018) Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Phys Fluids 30:106110
18.
go back to reference Walters IV, Journell CL, Lemcherfi A, Gejji R, Heister SD, Slabaugh CD (2019) Parametric survey of a natural gas-air rotating detonation engine at elevated pressure. In: AIAA scitech 2019 forum Walters IV, Journell CL, Lemcherfi A, Gejji R, Heister SD, Slabaugh CD (2019) Parametric survey of a natural gas-air rotating detonation engine at elevated pressure. In: AIAA scitech 2019 forum
19.
go back to reference Liu Z, Braun J, Paniagua G (2019) Characterization of a supersonic turbine downstream of a rotating detonation combustor. J Eng Gas Turb Power 141(3):031501 Liu Z, Braun J, Paniagua G (2019) Characterization of a supersonic turbine downstream of a rotating detonation combustor. J Eng Gas Turb Power 141(3):031501
20.
go back to reference Pandey KM, Debnath P (2016) Review on recent advances in pulse detonation engines. J Combust 016:1–16CrossRef Pandey KM, Debnath P (2016) Review on recent advances in pulse detonation engines. J Combust 016:1–16CrossRef
21.
go back to reference Peng HY, Liu WD, Liu SJ, Zhang HL, Zhou WY (2019) Realization of methane-air continuous rotating detonation wave. Acta Astronaut 164:1–8CrossRef Peng HY, Liu WD, Liu SJ, Zhang HL, Zhou WY (2019) Realization of methane-air continuous rotating detonation wave. Acta Astronaut 164:1–8CrossRef
22.
go back to reference Cooper MA, Jackson S, Austin J, Wintenberger E, Shepherd J (2002) Direct experimental impulse measurements for detonations and deflagrations. J Propul Power 18:1033–1041CrossRef Cooper MA, Jackson S, Austin J, Wintenberger E, Shepherd J (2002) Direct experimental impulse measurements for detonations and deflagrations. J Propul Power 18:1033–1041CrossRef
23.
go back to reference Meshkov EE (1970) Reflection of a plane shock wave from a rigid concave wall. Fluid Dyn 5(4):554–558CrossRef Meshkov EE (1970) Reflection of a plane shock wave from a rigid concave wall. Fluid Dyn 5(4):554–558CrossRef
24.
go back to reference Skews BW, Kleine H (2007) Flow features resulting from shock wave impact on a cylindrical cavity. J Fluid Mech 580:481–493CrossRef Skews BW, Kleine H (2007) Flow features resulting from shock wave impact on a cylindrical cavity. J Fluid Mech 580:481–493CrossRef
25.
go back to reference Bond C, Hill DJ, Meiron DI, Dimotakis PE (2009) Shock focusing in a planar convergent geometry: experiment and simulation. J Fluid Mech 641:297–333MathSciNetCrossRef Bond C, Hill DJ, Meiron DI, Dimotakis PE (2009) Shock focusing in a planar convergent geometry: experiment and simulation. J Fluid Mech 641:297–333MathSciNetCrossRef
26.
go back to reference Gelfand BE, Khomik SV, Bartenev AM, Medvedev SP, Gronig H, Olivier H (2000) Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3):197–204CrossRef Gelfand BE, Khomik SV, Bartenev AM, Medvedev SP, Gronig H, Olivier H (2000) Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10(3):197–204CrossRef
27.
go back to reference Gelfand BE, Khomik SV, Medvedev SP, Gronig H, Olivier H (2001) Visualization of self-ignition regimes in hydrogen-air mixtures under shock waves focusing. P Soc Photo Opt Ins 4183:688–695 Gelfand BE, Khomik SV, Medvedev SP, Gronig H, Olivier H (2001) Visualization of self-ignition regimes in hydrogen-air mixtures under shock waves focusing. P Soc Photo Opt Ins 4183:688–695
28.
go back to reference Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV (2018) Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber. Acta Astronaut 149:77–92CrossRef Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV (2018) Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber. Acta Astronaut 149:77–92CrossRef
29.
go back to reference Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV (2017) Detonation onset following shock wave focusing. Acta Astronaut 135:114–130CrossRef Smirnov NN, Penyazkov OG, Sevrouk KL, Nikitin VF, Stamov LI, Tyurenkova VV (2017) Detonation onset following shock wave focusing. Acta Astronaut 135:114–130CrossRef
Metadata
Title
Analysis on the Second Ignition Phenomenon Induced by Shock Wave Focusing in a 90° Conical Reflector
Authors
Yuanchang Li
Bo Zhang
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-8154-7_8

Premium Partner