Skip to main content
Top
Published in: Numerical Algorithms 4/2020

07-01-2020 | Original Paper

Analytical and numerical analysis of time fractional dual-phase-lag heat conduction during short-pulse laser heating

Authors: Xiaoping Wang, Huanying Xu, Haitao Qi

Published in: Numerical Algorithms | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we analytically and numerically investigate the non-Fourier heat conduction behavior within a finite medium based on the time fractional dual-phase-lag model. Firstly, the time fractional dual-phase-lag model and the corresponding fractional heat conduction equation for short-pulse laser heating is built. Laplace and Fourier cosine transforms are performed to derive the semi-analytical expression of temperature distribution in the Laplace domain. Then, by the L1 approximation for the Caputo derivative, the finite difference algorithm is developed for the short-pulse laser heating problem. The solvability, stability, and convergence of this algorithm are also examined. Meanwhile, the efficiency and accuracy of this method have been verified by using three numerical examples. Finally, based on numerical analysis, we study the non-Fourier heat conduction behavior and discuss the effect of variability of parameters, such as fractional parameter and the ratio between the relaxation and retardation times, on the temperature distribution graphically. We believe that this analysis, besides benefiting the laser heating applications, will also provide a deep theoretical insight to interpret the anomalous heat transport process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yilbas, B. S.: Laser heating application. Elsevier, Amsterdam (2012) Yilbas, B. S.: Laser heating application. Elsevier, Amsterdam (2012)
2.
go back to reference Yilbas, B. S., Al-Dweik, A. Y., Al-Aqeeli, N., Al-Qahtani, H. M.: Laser pulse heating of surfaces and thermal stress analysis. Springer, Heidelberg (2014) Yilbas, B. S., Al-Dweik, A. Y., Al-Aqeeli, N., Al-Qahtani, H. M.: Laser pulse heating of surfaces and thermal stress analysis. Springer, Heidelberg (2014)
3.
go back to reference Wang, L. Q., Zhou, X. S., Wei, X. H.: Heat conduction: mathematical models and analytical solutions. Springer, Berlin (2008)MATH Wang, L. Q., Zhou, X. S., Wei, X. H.: Heat conduction: mathematical models and analytical solutions. Springer, Berlin (2008)MATH
4.
go back to reference Tzou, D. Y.: Macro- to micro-scale heat transfer: the lagging behavior, 2nd edn. Wiley, Chichester (2015) Tzou, D. Y.: Macro- to micro-scale heat transfer: the lagging behavior, 2nd edn. Wiley, Chichester (2015)
5.
go back to reference Qi, H. T., Jiang, X. Y.: Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 390, 1876–1883 (2011)MathSciNetMATH Qi, H. T., Jiang, X. Y.: Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 390, 1876–1883 (2011)MathSciNetMATH
6.
go back to reference Jiang, F. M., Liu, D. Y., Zhou, J. H.: Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale. Therm Eng. 6, 331–346 (2002) Jiang, F. M., Liu, D. Y., Zhou, J. H.: Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale. Therm Eng. 6, 331–346 (2002)
7.
go back to reference Tzou, D. Y.: Experiment support for the lagging behavior in heat propagation. J. Thermophys Heat Transfer 9, 686–693 (1995) Tzou, D. Y.: Experiment support for the lagging behavior in heat propagation. J. Thermophys Heat Transfer 9, 686–693 (1995)
8.
go back to reference Antaki, P. J.: Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int. J. Heat Mass Transfer 41, 2253–2258 (1998)MATH Antaki, P. J.: Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int. J. Heat Mass Transfer 41, 2253–2258 (1998)MATH
9.
go back to reference Tang, D. W., Araki, N.: Non-Fourier heat condution behavior in finite mediums under pulse surface heating. Mat. Sci. Eng. A 292, 173–178 (2000) Tang, D. W., Araki, N.: Non-Fourier heat condution behavior in finite mediums under pulse surface heating. Mat. Sci. Eng. A 292, 173–178 (2000)
10.
go back to reference Tzou, D. Y., Chiu, K. S.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer. 44, 1725–1734 (2001)MATH Tzou, D. Y., Chiu, K. S.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer. 44, 1725–1734 (2001)MATH
11.
go back to reference Shen, B., Zhang, P.: Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int. J. Heat Mass Transfer. 51, 1713–1727 (2008)MATH Shen, B., Zhang, P.: Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int. J. Heat Mass Transfer. 51, 1713–1727 (2008)MATH
12.
go back to reference Ramadan, K., Tyfour, W. R., Al-Nimr, M. A.: On the analysis of short-pulse laser heating of metals using the dual phase lag heat conduction model. J. Heat Transfer. 131, 111301 (2009) Ramadan, K., Tyfour, W. R., Al-Nimr, M. A.: On the analysis of short-pulse laser heating of metals using the dual phase lag heat conduction model. J. Heat Transfer. 131, 111301 (2009)
13.
go back to reference Lee, H. L., Chen, W. L., Chang, W. J., Wei, E. J., Yang, Y. C.: Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Appl. Therm. Eng. 52, 275–283 (2013) Lee, H. L., Chen, W. L., Chang, W. J., Wei, E. J., Yang, Y. C.: Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Appl. Therm. Eng. 52, 275–283 (2013)
14.
go back to reference Majchrzak, E., Mochnacki, B.: Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM. Int. J. Therm. Sci. 133, 240–251 (2018) Majchrzak, E., Mochnacki, B.: Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM. Int. J. Therm. Sci. 133, 240–251 (2018)
15.
go back to reference Fan, Q. M., Lu, W. Q.: A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium. Int. J. Heat Mass Transfer 45, 2815–2821 (2002)MATH Fan, Q. M., Lu, W. Q.: A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium. Int. J. Heat Mass Transfer 45, 2815–2821 (2002)MATH
16.
go back to reference Dai, W. Z., Han, F., Sun, Z. Z.: Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction. Int. J. Heat Mass Transfer 64, 966–975 (2013) Dai, W. Z., Han, F., Sun, Z. Z.: Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction. Int. J. Heat Mass Transfer 64, 966–975 (2013)
17.
go back to reference Zhou, J. H., Zhang, Y. W., Chen, J. K.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48, 1477–1485 (2009) Zhou, J. H., Zhang, Y. W., Chen, J. K.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48, 1477–1485 (2009)
18.
go back to reference Afrin, N., Zhou, J. H., Zhang, Y. W., Tzou, D. Y., Chen, J. K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transfer Part A Appl. 61, 483–501 (2012) Afrin, N., Zhou, J. H., Zhang, Y. W., Tzou, D. Y., Chen, J. K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transfer Part A Appl. 61, 483–501 (2012)
19.
go back to reference Liu, K. C., Chen, Y. S.: Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1–9 (2016) Liu, K. C., Chen, Y. S.: Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1–9 (2016)
20.
go back to reference Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH
21.
go back to reference Magin, R. L.: Fractional calculus in bioengineering connecticut: Begell House (2006) Magin, R. L.: Fractional calculus in bioengineering connecticut: Begell House (2006)
22.
go back to reference Mainardi, F.: Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London (2010) Mainardi, F.: Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London (2010)
23.
go back to reference Monje, C. A., Chen, Y. Q., Vinagre, B. M., Xue, D. Y., Feliu, V.: Fractional-order systems and controls: Fundamentals and applications. Springer, London (2010)MATH Monje, C. A., Chen, Y. Q., Vinagre, B. M., Xue, D. Y., Feliu, V.: Fractional-order systems and controls: Fundamentals and applications. Springer, London (2010)MATH
24.
go back to reference Qi, H. T., Xu, H. Y., Guo, X. W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66, 824–831 (2013)MathSciNetMATH Qi, H. T., Xu, H. Y., Guo, X. W.: The Cattaneo-type time fractional heat conduction equation for laser heating. Comput. Math. Appl. 66, 824–831 (2013)MathSciNetMATH
25.
go back to reference Xu, H. Y., Qi, H. T., Jiang, X. Y.: Fraction Cattaneo heat equation in a semi-infinite medium. Chinese Phys. B 22, 338–343 (2013) Xu, H. Y., Qi, H. T., Jiang, X. Y.: Fraction Cattaneo heat equation in a semi-infinite medium. Chinese Phys. B 22, 338–343 (2013)
26.
go back to reference Ezzat, M. A., El-Karamany, A. S., Fayik, M. A.: Fractional ultrafast laser-induced thermo-elastic behavior in metal films. J. Therm. Stresses 35, 637–651 (2012) Ezzat, M. A., El-Karamany, A. S., Fayik, M. A.: Fractional ultrafast laser-induced thermo-elastic behavior in metal films. J. Therm. Stresses 35, 637–651 (2012)
27.
go back to reference Ezzat, M. A., El Karamany, A. S., Fayik, M. A.: Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch. Appl. Mech. 82, 557–572 (2012)MATH Ezzat, M. A., El Karamany, A. S., Fayik, M. A.: Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Arch. Appl. Mech. 82, 557–572 (2012)MATH
28.
go back to reference Ezzat, M. A., El-Bary, A. A., Fayik, M. A.: Fractional Fourier law with three-phase lag of thermoelasticity. Mech. Adv. Mater. Struc. 20, 593–602 (2013) Ezzat, M. A., El-Bary, A. A., Fayik, M. A.: Fractional Fourier law with three-phase lag of thermoelasticity. Mech. Adv. Mater. Struc. 20, 593–602 (2013)
29.
go back to reference Ferrás, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. M., Rebelo, M. S.: Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, 1080–1106 (2015)MathSciNetMATH Ferrás, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. M., Rebelo, M. S.: Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, 1080–1106 (2015)MathSciNetMATH
30.
go back to reference Xu, H. Y., Jiang, X. Y.: Time fractional dual-phase-lag heat conduction equation. Chinese Phys. B 24, 034401 (2015) Xu, H. Y., Jiang, X. Y.: Time fractional dual-phase-lag heat conduction equation. Chinese Phys. B 24, 034401 (2015)
31.
go back to reference Kumar, D., Rai, K. N.: Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. J. Therm. Biol. 67, 49–58 (2017) Kumar, D., Rai, K. N.: Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. J. Therm. Biol. 67, 49–58 (2017)
32.
go back to reference Mishra, T. N., Rai, K. N.: Numerical solution of FSPL heat conduction equation for analysis of thermal propagation. Appl. Math. Comput. 273, 1006–1017 (2016)MathSciNetMATH Mishra, T. N., Rai, K. N.: Numerical solution of FSPL heat conduction equation for analysis of thermal propagation. Appl. Math. Comput. 273, 1006–1017 (2016)MathSciNetMATH
33.
go back to reference Ji, C. C., Dai, W. Z., Sun, Z. Z.: Numerical method for solving the time-fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition. J. Sci. Comput. 75, 1307–1336 (2018)MathSciNetMATH Ji, C. C., Dai, W. Z., Sun, Z. Z.: Numerical method for solving the time-fractional dual-phase-lagging heat conduction equation with the temperature-jump boundary condition. J. Sci. Comput. 75, 1307–1336 (2018)MathSciNetMATH
34.
go back to reference Zhang, X.Y., Cheng, Z.T., Li, X.F.: Non-Fourier fractional heat conduction in two bonded dissimilar materials with a penny-shaped interface crack. Int. J. Therm. Sci. 140, 319–328 (2019) Zhang, X.Y., Cheng, Z.T., Li, X.F.: Non-Fourier fractional heat conduction in two bonded dissimilar materials with a penny-shaped interface crack. Int. J. Therm. Sci. 140, 319–328 (2019)
35.
go back to reference Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of Ambartsumian equation. Eur. Phys. J. Plus 133, 259 (2018) Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of Ambartsumian equation. Eur. Phys. J. Plus 133, 259 (2018)
36.
go back to reference Goswami, A., Singh, J., Kumar, D.: Sushila: An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A 524, 563–575 (2019)MathSciNet Goswami, A., Singh, J., Kumar, D.: Sushila: An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A 524, 563–575 (2019)MathSciNet
37.
go back to reference Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y. Q., Vinagre Jara, B. M.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)MathSciNetMATH Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y. Q., Vinagre Jara, B. M.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)MathSciNetMATH
38.
go back to reference Li, X. J., Xu, C. J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetMATH Li, X. J., Xu, C. J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)MathSciNetMATH
39.
go back to reference Li, C. P., Zeng, F. H., Liu, F. W.: Spectral approximations to the fractional integral and derivative. Frac. Calc. Appl. Anal. 15, 383–406 (2012)MathSciNetMATH Li, C. P., Zeng, F. H., Liu, F. W.: Spectral approximations to the fractional integral and derivative. Frac. Calc. Appl. Anal. 15, 383–406 (2012)MathSciNetMATH
40.
go back to reference Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)MathSciNetMATH Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)MathSciNetMATH
41.
go back to reference Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017)MathSciNetMATH Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017)MathSciNetMATH
42.
go back to reference Feng, L. B., Zhuang, P., Liu, F., Turner, I., Gu, Y. T.: Finite element method for space-time fractional diffusion equation. Numer. Algorit. 72, 749–767 (2016)MathSciNetMATH Feng, L. B., Zhuang, P., Liu, F., Turner, I., Gu, Y. T.: Finite element method for space-time fractional diffusion equation. Numer. Algorit. 72, 749–767 (2016)MathSciNetMATH
43.
go back to reference Li, C. P., Zeng, F. H.: Numerical methods for fractional calculus. CRC Press, Boca Raton (2015)MATH Li, C. P., Zeng, F. H.: Numerical methods for fractional calculus. CRC Press, Boca Raton (2015)MATH
44.
go back to reference Alikhanov, A. A.: Stability and convergence of difference schemes approximating a two-parameter non-local boundary value problem for time-fractional diffusion equation. Comput. Math. Model. 26, 252–272 (2015)MathSciNetMATH Alikhanov, A. A.: Stability and convergence of difference schemes approximating a two-parameter non-local boundary value problem for time-fractional diffusion equation. Comput. Math. Model. 26, 252–272 (2015)MathSciNetMATH
45.
go back to reference Feng, L.B., Liu, F.W., Turner, I., Zheng, L.C.: Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD couette flow of a generalized oldroyd-B fluid. Fract. Calc. Appl. Anal. 21, 1073–1103 (2018)MathSciNetMATH Feng, L.B., Liu, F.W., Turner, I., Zheng, L.C.: Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD couette flow of a generalized oldroyd-B fluid. Fract. Calc. Appl. Anal. 21, 1073–1103 (2018)MathSciNetMATH
46.
go back to reference Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. algor. 73, 445–476 (2016)MathSciNetMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. algor. 73, 445–476 (2016)MathSciNetMATH
47.
go back to reference Tayebi, A., Shekari, Y., Heydari, M. H.: A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)MathSciNetMATH Tayebi, A., Shekari, Y., Heydari, M. H.: A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)MathSciNetMATH
48.
go back to reference Kumar, A., Bhardwaj, A., Rathish Kumar, B. V.: A meshless local collocation method for time fractional diffusion wave equation. Comput. Math. Appl. 78, 1851–1861 (2019)MathSciNetMATH Kumar, A., Bhardwaj, A., Rathish Kumar, B. V.: A meshless local collocation method for time fractional diffusion wave equation. Comput. Math. Appl. 78, 1851–1861 (2019)MathSciNetMATH
49.
go back to reference Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91, 307–317 (2018)MathSciNetMATH Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91, 307–317 (2018)MathSciNetMATH
50.
go back to reference Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)MathSciNetMATH Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)MathSciNetMATH
51.
go back to reference Odibat, Z. M., Shawagfeh, N. T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)MathSciNetMATH Odibat, Z. M., Shawagfeh, N. T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)MathSciNetMATH
52.
go back to reference Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A: Math. Theor. 45, 485101 (2012)MathSciNetMATH Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A: Math. Theor. 45, 485101 (2012)MathSciNetMATH
53.
go back to reference Qiu, T. Q., Tien, C. L.: Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transfer 115, 835–841 (1993) Qiu, T. Q., Tien, C. L.: Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transfer 115, 835–841 (1993)
54.
go back to reference Debnath, M., Bhatta, D.: Integral transforms and their applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)MATH Debnath, M., Bhatta, D.: Integral transforms and their applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)MATH
55.
go back to reference Sun, Z. Z.: Numerical methods of partial differential equations, 2nd edn. Science Press, Beijing (2012). (in Chinese) Sun, Z. Z.: Numerical methods of partial differential equations, 2nd edn. Science Press, Beijing (2012). (in Chinese)
Metadata
Title
Analytical and numerical analysis of time fractional dual-phase-lag heat conduction during short-pulse laser heating
Authors
Xiaoping Wang
Huanying Xu
Haitao Qi
Publication date
07-01-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00869-6

Other articles of this Issue 4/2020

Numerical Algorithms 4/2020 Go to the issue

Premium Partner