Skip to main content
Top
Published in: Production Engineering 5-6/2020

08-09-2020 | Production Process

Analytical force modelling for micro milling additively fabricated Inconel 625

Authors: Andrea Abeni, Dario Loda, Tuğrul Özel, Aldo Attanasio

Published in: Production Engineering | Issue 5-6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, miniaturization of components has been concerned with several industrial fields including aerospace, energy, and electronics. This phenomenon resulted in increasing demand of micro-components with complex shape and high strength, often in high-temperature environment. Nickel-based superalloys such as Inconel 625 are a class of material suitable to aforementioned applications and can be successfully processed with Additive Manufacturing (AM). Moreover, micro-milling can be employed to manufacture micro-scale features on the additively fabricated parts or to achieve better surface finishes, as required for high-precision mechanical assemblies. In micro machining, it is possible to notice a lack of scientific study focusses on the material removal behavior of difficulty-to-cut alloys produced via Additive Manufacturing. This paper describes an analytical cutting force model suitable also for AM’d parts which considers the presence of ploughing- and shearing- dominated cutting regimes. A refinement procedure of the cutting force model was defined and applied by performing an experimental work on Inconel 625 samples fabricated by LaserCUSING™. A search algorithm was employed to develop an iterative methodology to determine the unknown cutting force model parameters. The model was successfully utilized to predict how the cutting force is affected as the process parameters change.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRef
2.
go back to reference DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2017) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224CrossRef DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2017) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224CrossRef
3.
go back to reference Ma M, Wang Z, Gao M, Zeng X (2014) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150CrossRef Ma M, Wang Z, Gao M, Zeng X (2014) Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol 215:142–150CrossRef
4.
go back to reference Criales LE, Arisoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf 121:22–36CrossRef Criales LE, Arisoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf 121:22–36CrossRef
5.
go back to reference Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587CrossRef Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587CrossRef
6.
go back to reference Özel T, Altay A, Donmez A, Leach R (2018) Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int J Adv Manuf Technol 94(9–12):4451–4458CrossRef Özel T, Altay A, Donmez A, Leach R (2018) Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion. Int J Adv Manuf Technol 94(9–12):4451–4458CrossRef
7.
go back to reference Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52(2):635–657CrossRef Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52(2):635–657CrossRef
8.
go back to reference Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768CrossRef Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768CrossRef
9.
go back to reference Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Product Eng Res Dev 4(1):25–34CrossRef Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Product Eng Res Dev 4(1):25–34CrossRef
10.
go back to reference Chrzanowski W, Neel EAA, Armitage DA, Knowles JC (2008) Effect of surface treatment on the bioactivity of nickel-titanium. Acta Biomater 4(6):1969–1984CrossRef Chrzanowski W, Neel EAA, Armitage DA, Knowles JC (2008) Effect of surface treatment on the bioactivity of nickel-titanium. Acta Biomater 4(6):1969–1984CrossRef
11.
go back to reference Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164(1):428–431CrossRef Trosch T, Strößner J, Völkl R, Glatzel U (2016) Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 164(1):428–431CrossRef
12.
go back to reference Sharman ARC, Hughes JI, Ridgway K (2006) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414CrossRef Sharman ARC, Hughes JI, Ridgway K (2006) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414CrossRef
13.
go back to reference Patel K, Fei J, Liu G, Özel T (2019) Milling investigations and yield strength calculations for nickel alloy Inconel 625 manufactured with laser powder bed fusion process. Prod Eng 13(6):693–702CrossRef Patel K, Fei J, Liu G, Özel T (2019) Milling investigations and yield strength calculations for nickel alloy Inconel 625 manufactured with laser powder bed fusion process. Prod Eng 13(6):693–702CrossRef
14.
go back to reference Malekian M, Park SS, Jun MBG (2009) Modelling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598CrossRef Malekian M, Park SS, Jun MBG (2009) Modelling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598CrossRef
15.
go back to reference Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57(1):113–116CrossRef Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57(1):113–116CrossRef
16.
go back to reference Shi Z, Li Y, Liu Z, Qiao Z (2018) Determination of minimum uncut chip thickness during micro-end milling Inconel 718 with acoustic emission signals and FEM simulation. Int J Adv Manuf Technol 98(1–4):37–45CrossRef Shi Z, Li Y, Liu Z, Qiao Z (2018) Determination of minimum uncut chip thickness during micro-end milling Inconel 718 with acoustic emission signals and FEM simulation. Int J Adv Manuf Technol 98(1–4):37–45CrossRef
17.
go back to reference Przestacki D, Chwalczuk T, Wojciechowski S (2017) The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers. Int J Adv Manuf Technol 91(9–12):3887–3898CrossRef Przestacki D, Chwalczuk T, Wojciechowski S (2017) The study on minimum uncut chip thickness and cutting forces during laser-assisted turning of WC/NiCr clad layers. Int J Adv Manuf Technol 91(9–12):3887–3898CrossRef
18.
go back to reference Brandão F, Rodrigues AR, Coelho RT, Fagali A (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54CrossRef Brandão F, Rodrigues AR, Coelho RT, Fagali A (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54CrossRef
19.
go back to reference Allegri G, Colpani A, Ginestra PS, Attanasio A (2019) An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting. Materials 12(13):1–12 Allegri G, Colpani A, Ginestra PS, Attanasio A (2019) An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting. Materials 12(13):1–12
20.
go back to reference Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553–559CrossRef Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553–559CrossRef
21.
go back to reference Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173CrossRef Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173CrossRef
22.
go back to reference Zhou L, Peng FY, Yana R, Yao PF, Yang CC, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tools Manuf 97:29–41CrossRef Zhou L, Peng FY, Yana R, Yao PF, Yang CC, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tools Manuf 97:29–41CrossRef
23.
go back to reference Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tools Manuf 107:21–40CrossRef Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tools Manuf 107:21–40CrossRef
24.
go back to reference Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288:222–232CrossRef Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288:222–232CrossRef
25.
go back to reference Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Process 22:659–667CrossRef Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Process 22:659–667CrossRef
26.
go back to reference Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4 V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4–5):435–444CrossRef Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4 V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng 11(4–5):435–444CrossRef
27.
go back to reference Attanasio A, Abeni A, Ceretti E, Özel T (2019) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35CrossRef Attanasio A, Abeni A, Ceretti E, Özel T (2019) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35CrossRef
28.
go back to reference Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tools Manuf 67:18–27CrossRef Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tools Manuf 67:18–27CrossRef
29.
go back to reference Attanasio A, Garbellini A, Ceretti E, Giardini C (2015) Force modelling in micromilling of channels. Int J Nanomanuf 11(5–6):275–296CrossRef Attanasio A, Garbellini A, Ceretti E, Giardini C (2015) Force modelling in micromilling of channels. Int J Nanomanuf 11(5–6):275–296CrossRef
30.
go back to reference Moges TM, Desai KA, Rao PVM (2018) Modeling of cutting force, tool deflection, and surface error in micro-milling operation. Int J Adv Manuf Technol 98(9–12):2865–2881CrossRef Moges TM, Desai KA, Rao PVM (2018) Modeling of cutting force, tool deflection, and surface error in micro-milling operation. Int J Adv Manuf Technol 98(9–12):2865–2881CrossRef
31.
go back to reference Gelfi M, Attanasio A, Ceretti E, Garbellini A, Pola A (2019) Micromilling of lamellar Ti6Al4V: cutting force analysis. Mater Manuf Process 31(7):919–925CrossRef Gelfi M, Attanasio A, Ceretti E, Garbellini A, Pola A (2019) Micromilling of lamellar Ti6Al4V: cutting force analysis. Mater Manuf Process 31(7):919–925CrossRef
32.
go back to reference Vogler MP, Kapoor SG, DeVor RE (2004) On the modeling and analysis of machining performance in micro end milling, part II: cutting force prediction. ASME J Manuf Sci Eng 126(4):695–705CrossRef Vogler MP, Kapoor SG, DeVor RE (2004) On the modeling and analysis of machining performance in micro end milling, part II: cutting force prediction. ASME J Manuf Sci Eng 126(4):695–705CrossRef
33.
go back to reference Rodríguez P, Labarga JE (2013) A new model for the prediction of cutting forces in micro-end-milling operations. J Mater Process Technol 213:261–268CrossRef Rodríguez P, Labarga JE (2013) A new model for the prediction of cutting forces in micro-end-milling operations. J Mater Process Technol 213:261–268CrossRef
34.
go back to reference Chen W, Teng X, Huo D, Wang Q (2017) An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol 93(9–12):3005–3016CrossRef Chen W, Teng X, Huo D, Wang Q (2017) An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol 93(9–12):3005–3016CrossRef
35.
go back to reference Zhang X, Yu T, Wang W (2018) Dynamic cutting force prediction for micro end milling considering tool vibrations and run-out. Proc Inst Mech Eng Part C J Mech Eng Sci 233(7):2248–2261CrossRef Zhang X, Yu T, Wang W (2018) Dynamic cutting force prediction for micro end milling considering tool vibrations and run-out. Proc Inst Mech Eng Part C J Mech Eng Sci 233(7):2248–2261CrossRef
36.
go back to reference Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on IEEE. 1995:39-43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on IEEE. 1995:39-43
37.
go back to reference Raja SB, Baskar N (2011) Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int J Adv Manuf Technol 54(5–8):445–463CrossRef Raja SB, Baskar N (2011) Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int J Adv Manuf Technol 54(5–8):445–463CrossRef
38.
go back to reference Ciurana J, Arias G, Özel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24(3):358–368CrossRef Ciurana J, Arias G, Özel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24(3):358–368CrossRef
39.
go back to reference Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Materi Res 46:151–186CrossRef Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Materi Res 46:151–186CrossRef
40.
go back to reference Abeni A, Lancini M, Attanasio A (2019) Characterization of machine tools and measurement system for micromilling. Nanotechnol Precis Eng 2:23–28CrossRef Abeni A, Lancini M, Attanasio A (2019) Characterization of machine tools and measurement system for micromilling. Nanotechnol Precis Eng 2:23–28CrossRef
41.
go back to reference Attanasio A, Abeni A, Özel T, Ceretti E (2018) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35 Attanasio A, Abeni A, Özel T, Ceretti E (2018) Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. Int J Adv Manuf Technol 100(1–4):25–35
42.
go back to reference Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14CrossRef Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14CrossRef
Metadata
Title
Analytical force modelling for micro milling additively fabricated Inconel 625
Authors
Andrea Abeni
Dario Loda
Tuğrul Özel
Aldo Attanasio
Publication date
08-09-2020
Publisher
Springer Berlin Heidelberg
Published in
Production Engineering / Issue 5-6/2020
Print ISSN: 0944-6524
Electronic ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-020-00980-x

Other articles of this Issue 5-6/2020

Production Engineering 5-6/2020 Go to the issue

Premium Partners