Skip to main content
Top
Published in:

19-05-2024

Analytical investigation of thermodynamic properties of power electronic semiconductor materials

Authors: Zafer Dogan, Tural Mehmetoglu

Published in: Journal of Computational Electronics | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Theoretical and experimental investigations are critical for accurately investigating the structure and physical properties of semiconductors, allowing their widespread use in power electronic devices. The heat capacities are important thermal properties needed to examine the electronic and electrical properties of device materials. The specific heat capacities of power electronic semiconductors, such as (\({\text{GaN}}\)) gallium nitride, (\({\text{SiC}}\)) silicon carbide, (\({\text{Ga}}_{2} {\text{O}}_{3}\)) gallium oxide, and diamond, have been evaluated theoretically using the recently developed Einstein–Debye approximation. On the grounds of the Einstein–Debye approach, the derived general analytical expression for the calculation of the heat capacities is valid for the entire temperature range. The calculation results are compared with the previously available experimental and theoretical data for illustrating the correctness of the method. The evaluation and literature analysis confirm the effectiveness of the proposed method. As seen from the comparison with various results reported in the literaure, the results obtained from this approach are convenient and competitive.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Trzynadlowski, A.M.: Introduction to Modern Power Electronics. Wiley, Canada (2016) Trzynadlowski, A.M.: Introduction to Modern Power Electronics. Wiley, Canada (2016)
2.
go back to reference Skvarenina, T.L.: The Power Electronics Handbook. CRC Pres, New York (2002) Skvarenina, T.L.: The Power Electronics Handbook. CRC Pres, New York (2002)
3.
go back to reference Mohon, N., Undeland, T.M., Robbins, W.P.: Power Electronics, Converters, Applications and Design. Wiley, New York (1995) Mohon, N., Undeland, T.M., Robbins, W.P.: Power Electronics, Converters, Applications and Design. Wiley, New York (1995)
4.
go back to reference Ayalew, T.: SiC semiconductor devices technology, modeling and simulation. Ph.D. dissertation, Technischen Universität Wien, Vienna, Austria (2004) Ayalew, T.: SiC semiconductor devices technology, modeling and simulation. Ph.D. dissertation, Technischen Universität Wien, Vienna, Austria (2004)
5.
go back to reference Harris, G.L.: Properties of Silicon Carbide. Harward University, New York (1988) Harris, G.L.: Properties of Silicon Carbide. Harward University, New York (1988)
6.
go back to reference Saddow, S.E., Agarwal, A.K.: Advances in Silicon Carbide Processing and Applications. Artech House, Boston (2004) Saddow, S.E., Agarwal, A.K.: Advances in Silicon Carbide Processing and Applications. Artech House, Boston (2004)
7.
go back to reference Baliga, B.J. (ed.): Introduction in Wide Bandgap Semiconductor Power Devices. Woodhead Publishing, Sawston (2019) Baliga, B.J. (ed.): Introduction in Wide Bandgap Semiconductor Power Devices. Woodhead Publishing, Sawston (2019)
8.
go back to reference Eddy, C.R., Jr., Gaskill, D.K.: Silicon carbide as a platform for power electronics. Science 324(5933), 1398–1400 (2009)CrossRef Eddy, C.R., Jr., Gaskill, D.K.: Silicon carbide as a platform for power electronics. Science 324(5933), 1398–1400 (2009)CrossRef
9.
go back to reference Van Wyk, J.D., Lee, F.C.: On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 59–72 (2013)CrossRef Van Wyk, J.D., Lee, F.C.: On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 59–72 (2013)CrossRef
10.
go back to reference Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2001) Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2001)
11.
go back to reference Madelung, O.: Semiconductors—basic data. In: Data in Science and Technology, vol. 1. Springer, Berlin (1996) Madelung, O.: Semiconductors—basic data. In: Data in Science and Technology, vol. 1. Springer, Berlin (1996)
12.
go back to reference Kassakian, J.G., Jahns, T.M.: Evolving and emerging applications of power electronics in systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 47–58 (2013)CrossRef Kassakian, J.G., Jahns, T.M.: Evolving and emerging applications of power electronics in systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 47–58 (2013)CrossRef
13.
go back to reference Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., Yamakoshi, S.: Development of gallium oxide power devices. Phys. Status Solidi (a) 211(1), 21–26 (2014)CrossRef Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., Yamakoshi, S.: Development of gallium oxide power devices. Phys. Status Solidi (a) 211(1), 21–26 (2014)CrossRef
14.
go back to reference Chow, T.-S.: SiC and GaN high voltage power switching devices. Mater. Sci. Forum 338–342, 1155–1160 (2000)CrossRef Chow, T.-S.: SiC and GaN high voltage power switching devices. Mater. Sci. Forum 338–342, 1155–1160 (2000)CrossRef
15.
go back to reference Langpoklakpam, C., Liu, A.C., Chu, K.H., Hsu, L.H., Lee, W.C., Chen, S.C., Kuo, H.C.: Review of silicon carbide processing for power MOSFET. Crystals 12(2), 245 (2022)CrossRef Langpoklakpam, C., Liu, A.C., Chu, K.H., Hsu, L.H., Lee, W.C., Chen, S.C., Kuo, H.C.: Review of silicon carbide processing for power MOSFET. Crystals 12(2), 245 (2022)CrossRef
16.
go back to reference Matsunami, H.: Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 83(1), 2–4 (2006)CrossRef Matsunami, H.: Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 83(1), 2–4 (2006)CrossRef
17.
go back to reference Wellmann, P.J.: Power electronic semiconductor materials for automotive and energy saving applications—SiC, GaN, Ga2O3, and diamond. Z. Anorg. Allg. Chem. 643(21), 1312–1322 (2017)CrossRef Wellmann, P.J.: Power electronic semiconductor materials for automotive and energy saving applications—SiC, GaN, Ga2O3, and diamond. Z. Anorg. Allg. Chem. 643(21), 1312–1322 (2017)CrossRef
18.
go back to reference Passler, R.: Limiting Debye temperature behavior following from cryogenic heat capacity data for group-IV, III–V, and II–VI materials. Phys. Status Solidi B 247(1), 77–92 (2010)CrossRef Passler, R.: Limiting Debye temperature behavior following from cryogenic heat capacity data for group-IV, III–V, and II–VI materials. Phys. Status Solidi B 247(1), 77–92 (2010)CrossRef
19.
go back to reference Guo, D., Guo, Q., Chen, Z., Wu, Z., Li, P., Tang, W.: Review of Ga2O3-based optoelectronic devices. Mater. Today Phys. 11, 100157 (2019)CrossRef Guo, D., Guo, Q., Chen, Z., Wu, Z., Li, P., Tang, W.: Review of Ga2O3-based optoelectronic devices. Mater. Today Phys. 11, 100157 (2019)CrossRef
20.
go back to reference Lee, W.H., Yao, X.H.: First principle investigation of phase transition and thermodynamic properties of SiC. Comput. Mater. Sci. 106, 76–82 (2015)CrossRef Lee, W.H., Yao, X.H.: First principle investigation of phase transition and thermodynamic properties of SiC. Comput. Mater. Sci. 106, 76–82 (2015)CrossRef
21.
go back to reference Durandurdu, M.: Pressure-induced phase transition of SiC. J. Phys. Condens. Matter 16(25), 4411–4417 (2004)CrossRef Durandurdu, M.: Pressure-induced phase transition of SiC. J. Phys. Condens. Matter 16(25), 4411–4417 (2004)CrossRef
22.
go back to reference Eker, S., Durandurdu, M.: Pressure-induced phase transformation of 4H-SiC: an ab initio constant-pressure study. EPL 87(3), 36001 (2009)CrossRef Eker, S., Durandurdu, M.: Pressure-induced phase transformation of 4H-SiC: an ab initio constant-pressure study. EPL 87(3), 36001 (2009)CrossRef
23.
go back to reference Miao, M.S., Lambrecht, W.R.L.: Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure. Phys. Rev. B 68(9), 092103 (2003)CrossRef Miao, M.S., Lambrecht, W.R.L.: Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure. Phys. Rev. B 68(9), 092103 (2003)CrossRef
24.
go back to reference Novir, S.B., Aram, M.R.: Quantum mechanical investigations of mechanical and thermodynamic properties of SiC and ZrO2 ceramics. J. Mol. Model. 27, 269 (2021)CrossRef Novir, S.B., Aram, M.R.: Quantum mechanical investigations of mechanical and thermodynamic properties of SiC and ZrO2 ceramics. J. Mol. Model. 27, 269 (2021)CrossRef
25.
go back to reference Touloukian, Y.S., Cezairyliyan, A., Ho, C.Y., et al.: Specific Heat of Solids. Hemisphere Publishing Corporation, New York (1988) Touloukian, Y.S., Cezairyliyan, A., Ho, C.Y., et al.: Specific Heat of Solids. Hemisphere Publishing Corporation, New York (1988)
26.
go back to reference Ha Moon, W., Hwang, H.J.: Structural and thermodynamic properties of GaN: a molecular dynamics simulation. Phys. Lett. A 315(3–4), 319–324 (2003)CrossRef Ha Moon, W., Hwang, H.J.: Structural and thermodynamic properties of GaN: a molecular dynamics simulation. Phys. Lett. A 315(3–4), 319–324 (2003)CrossRef
27.
go back to reference Lu, L.-Y., Chen, X.-R., Cheng, Y., Zhao, J.-Z.: Transition phase and thermodynamic properties of GaN via first-principles calculations. Solid State Commun. 136(3), 152–156 (2005)CrossRef Lu, L.-Y., Chen, X.-R., Cheng, Y., Zhao, J.-Z.: Transition phase and thermodynamic properties of GaN via first-principles calculations. Solid State Commun. 136(3), 152–156 (2005)CrossRef
28.
go back to reference Sun, X., Chen, Q., Chu, Y., Wang, C.: Structural and thermodynamic properties of GaN at high pressures and high temperatures. Physica B 368(1–4), 243–250 (2005)CrossRef Sun, X., Chen, Q., Chu, Y., Wang, C.: Structural and thermodynamic properties of GaN at high pressures and high temperatures. Physica B 368(1–4), 243–250 (2005)CrossRef
29.
go back to reference Achoura, H., Louhibi-Faslab, S., Manac, F.: Theoretical investigation of GaN. Phys. Procedia 55, 17–23 (2014)CrossRef Achoura, H., Louhibi-Faslab, S., Manac, F.: Theoretical investigation of GaN. Phys. Procedia 55, 17–23 (2014)CrossRef
30.
go back to reference Passler, R.: Characteristic non-Debye heat capacity formula applied to GaN and ZnO. J. Appl. Phys. 110(4), 043530 (2011)CrossRef Passler, R.: Characteristic non-Debye heat capacity formula applied to GaN and ZnO. J. Appl. Phys. 110(4), 043530 (2011)CrossRef
31.
go back to reference Lee, S., Kwon, S.Y., Ham, H.J.: Specific heat capacity of gallium nitride. Jpn. J. Appl. Phys. 50(11S), 11RG02 (2011)CrossRef Lee, S., Kwon, S.Y., Ham, H.J.: Specific heat capacity of gallium nitride. Jpn. J. Appl. Phys. 50(11S), 11RG02 (2011)CrossRef
32.
go back to reference Safieddine, F., Hassan, F.E.H., Kazan, M.: Comparative study of the fundamental properties of Ga2O3 polymorphs. J. Solid State Chem. 312, 123272 (2022)CrossRef Safieddine, F., Hassan, F.E.H., Kazan, M.: Comparative study of the fundamental properties of Ga2O3 polymorphs. J. Solid State Chem. 312, 123272 (2022)CrossRef
33.
go back to reference Zinkevich, M., Aldinger, F.: Thermodynamic assessment of the gallium-oxygen system. J. Am. Ceram. Soc. 87(4), 683–691 (2004)CrossRef Zinkevich, M., Aldinger, F.: Thermodynamic assessment of the gallium-oxygen system. J. Am. Ceram. Soc. 87(4), 683–691 (2004)CrossRef
34.
go back to reference Shi, F., Qiao, H.: Preparations, properties and applications of gallium oxide nanomaterials—a review. Nano Select 3(2), 348–373 (2022)CrossRef Shi, F., Qiao, H.: Preparations, properties and applications of gallium oxide nanomaterials—a review. Nano Select 3(2), 348–373 (2022)CrossRef
35.
go back to reference Vassiliev, V.: Optimization of the heat capacities of diamond-like compounds. J. Mater. Sci. Eng. B 11(4–6), 76–80 (2021) Vassiliev, V.: Optimization of the heat capacities of diamond-like compounds. J. Mater. Sci. Eng. B 11(4–6), 76–80 (2021)
36.
go back to reference Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71(20), 205214 (2005)CrossRef Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71(20), 205214 (2005)CrossRef
37.
go back to reference Wilks, J., Wilks, E.: Properties and Applications of Diamond. Oxford Press, Oxford (1991) Wilks, J., Wilks, E.: Properties and Applications of Diamond. Oxford Press, Oxford (1991)
38.
go back to reference Prado, E.O., Bolsi, P.C., Sartori, H.C., Pinheiro, J.R.: An overview about Si, superjunction, SiC and GaN power MOSFET technologies in power electronics applications. Energies 15(14), 5244 (2022)CrossRef Prado, E.O., Bolsi, P.C., Sartori, H.C., Pinheiro, J.R.: An overview about Si, superjunction, SiC and GaN power MOSFET technologies in power electronics applications. Energies 15(14), 5244 (2022)CrossRef
39.
go back to reference Cankurtaran, M., Askerov, B.M.: Equation of state, isobaric specific heat, and thermal expansion of solids with polyatomic basis in the Einstein–Debye approximation. Phys. Status Solidi (b) 194(2), 499–507 (1996)CrossRef Cankurtaran, M., Askerov, B.M.: Equation of state, isobaric specific heat, and thermal expansion of solids with polyatomic basis in the Einstein–Debye approximation. Phys. Status Solidi (b) 194(2), 499–507 (1996)CrossRef
40.
go back to reference Askerov, B.M., Cankurtaran, M.: Isobaric specific heat and thermal expansion of solids in the Debye approximation. Phys. Status Solidi (b) 185(2), 341–348 (1994)CrossRef Askerov, B.M., Cankurtaran, M.: Isobaric specific heat and thermal expansion of solids in the Debye approximation. Phys. Status Solidi (b) 185(2), 341–348 (1994)CrossRef
41.
go back to reference Askerov, B.M., Figarova, S.R.: Thermodynamics Gibbs Method and Statistical Physics of Electron Gases. Springer, Heidelberg (2009) Askerov, B.M., Figarova, S.R.: Thermodynamics Gibbs Method and Statistical Physics of Electron Gases. Springer, Heidelberg (2009)
42.
go back to reference Dogan, Z., Mehmetoglu, T.: Accurate calculations of the heat capacities of pure metals using the Einstein–Debye approximation. J. Eng. Phys. Thermophys. 92(6), 1620–1624 (2019)CrossRef Dogan, Z., Mehmetoglu, T.: Accurate calculations of the heat capacities of pure metals using the Einstein–Debye approximation. J. Eng. Phys. Thermophys. 92(6), 1620–1624 (2019)CrossRef
43.
go back to reference Mehmetoglu, T.: An analytical technique for evaluating heat capacity of GeS, GeSe, GeTe and SnS semiconductors using Eınsteın–Debye approximation. J. Sci. Arts 21(3), 857–862 (2021)CrossRef Mehmetoglu, T.: An analytical technique for evaluating heat capacity of GeS, GeSe, GeTe and SnS semiconductors using Eınsteın–Debye approximation. J. Sci. Arts 21(3), 857–862 (2021)CrossRef
44.
go back to reference Eser, E., Duyuran, B., Bölükdemir, M.H., Koç, H.: A study on heat capacity of oxide and nitride nuclear fuels by using Einstein–Debye approximation. Nucl. Eng. Technol. 52(6), 1208–1212 (2020)CrossRef Eser, E., Duyuran, B., Bölükdemir, M.H., Koç, H.: A study on heat capacity of oxide and nitride nuclear fuels by using Einstein–Debye approximation. Nucl. Eng. Technol. 52(6), 1208–1212 (2020)CrossRef
45.
go back to reference Nernst, W., Lindemann, F.A.: Specific heat and quantum theory. Z. Electrochem. Angew. P 17, 817–827 (1911) Nernst, W., Lindemann, F.A.: Specific heat and quantum theory. Z. Electrochem. Angew. P 17, 817–827 (1911)
46.
go back to reference Landau, L.D., Lifshits, E.M.: Statistical Physics. Pergamon Press, London (1959) Landau, L.D., Lifshits, E.M.: Statistical Physics. Pergamon Press, London (1959)
47.
go back to reference Gonzalez, I., Kondrashuk, I., Moll, V.H., Vega, A.: Analytic expressions for Debye functions and the heat capacity of a solid. Mathematics 10(10), 1745 (2022)CrossRef Gonzalez, I., Kondrashuk, I., Moll, V.H., Vega, A.: Analytic expressions for Debye functions and the heat capacity of a solid. Mathematics 10(10), 1745 (2022)CrossRef
48.
go back to reference Anderson, W.: An analytic expression approximating the Debye heat capacity function. AIP Adv. 9(7), 075108 (2019)CrossRef Anderson, W.: An analytic expression approximating the Debye heat capacity function. AIP Adv. 9(7), 075108 (2019)CrossRef
49.
go back to reference Dubinov, A.E., Dubinova, A.A.: Exact integral-free expressions for the integral Debye functions. Tech. Phys. Lett. 34(12), 999–1001 (2008)CrossRef Dubinov, A.E., Dubinova, A.A.: Exact integral-free expressions for the integral Debye functions. Tech. Phys. Lett. 34(12), 999–1001 (2008)CrossRef
50.
go back to reference Eser, E., Koç, H.: Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals. Physica B 492, 7–10 (2016)CrossRef Eser, E., Koç, H.: Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals. Physica B 492, 7–10 (2016)CrossRef
51.
go back to reference Koç, H., Eser, E.: Estimation of the heat capacity of CdTe semiconductor. Mod. Phys. Lett. B 30(04), 1650026 (2016)CrossRef Koç, H., Eser, E.: Estimation of the heat capacity of CdTe semiconductor. Mod. Phys. Lett. B 30(04), 1650026 (2016)CrossRef
52.
go back to reference Gokbulut, M., Gursoy, G., Aşcı, Ş, Eser, E.: Study on specific heat capacity and thermal conductivity of uranium nitride. Kerntechnik 86, 400–403 (2021)CrossRef Gokbulut, M., Gursoy, G., Aşcı, Ş, Eser, E.: Study on specific heat capacity and thermal conductivity of uranium nitride. Kerntechnik 86, 400–403 (2021)CrossRef
53.
go back to reference Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1980) Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1980)
54.
go back to reference Leitner, J., Strejc, A., Sedmidubsky, D., Ruzicka, K.: High temperature and heat capacity of GaN. Thermochem. Acta 401(2), 169–173 (2003)CrossRef Leitner, J., Strejc, A., Sedmidubsky, D., Ruzicka, K.: High temperature and heat capacity of GaN. Thermochem. Acta 401(2), 169–173 (2003)CrossRef
55.
go back to reference Yan, W.S., Zhang, R., Xie, Z.L., Xiu, X.Q., Zheng, Y.D., Liu, Z.G., Xu, S., He, Z.H.: The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of GaN. Appl. Phys. Lett. 94(24), 242111 (2009)CrossRef Yan, W.S., Zhang, R., Xie, Z.L., Xiu, X.Q., Zheng, Y.D., Liu, Z.G., Xu, S., He, Z.H.: The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of GaN. Appl. Phys. Lett. 94(24), 242111 (2009)CrossRef
56.
go back to reference Kremer, R.K., Cardona, M., Schmitt, E.: Heat capacity of -GaN: isotope effects. Phys. Rev. B 72(7), 075209 (2005)CrossRef Kremer, R.K., Cardona, M., Schmitt, E.: Heat capacity of -GaN: isotope effects. Phys. Rev. B 72(7), 075209 (2005)CrossRef
57.
go back to reference Sanati, M., Estreicher, S.K.: Specific heat and entropy of GaN. J. Phys. Condens. Matter 16(28), L327 (2004)CrossRef Sanati, M., Estreicher, S.K.: Specific heat and entropy of GaN. J. Phys. Condens. Matter 16(28), L327 (2004)CrossRef
58.
go back to reference Pässler, R.: Efficient Debye function interpolation formulae: sample applications to diamond. Rec. Prog. Mater. 3(4), 1–42 (2021)CrossRef Pässler, R.: Efficient Debye function interpolation formulae: sample applications to diamond. Rec. Prog. Mater. 3(4), 1–42 (2021)CrossRef
59.
go back to reference Dinsdale, A.T.: SGTE data for pure elements. Calphad 15(4), 317–425 (1991)CrossRef Dinsdale, A.T.: SGTE data for pure elements. Calphad 15(4), 317–425 (1991)CrossRef
60.
go back to reference Victor, A.C.: Heat capacity of diamond at high temperatures. J. Chem. Phys. 36, 1903 (1962)CrossRef Victor, A.C.: Heat capacity of diamond at high temperatures. J. Chem. Phys. 36, 1903 (1962)CrossRef
61.
go back to reference Desnoyers, J.E., Morrison, J.A.: The heat capacity of diamond between 12.8° and 277°K. Philos. Mag. 3(1), 42–48 (1958)CrossRef Desnoyers, J.E., Morrison, J.A.: The heat capacity of diamond between 12.8° and 277°K. Philos. Mag. 3(1), 42–48 (1958)CrossRef
62.
go back to reference Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73(6), 064304 (2006)CrossRef Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73(6), 064304 (2006)CrossRef
63.
go back to reference Poole, C.P., Jr.: Encyclopedıc Dıctıonary of Condensed Matter Physıcs, vol. 1. Elsevier Pub., London (2004) Poole, C.P., Jr.: Encyclopedıc Dıctıonary of Condensed Matter Physıcs, vol. 1. Elsevier Pub., London (2004)
64.
go back to reference Chekhovskoy, VYa.: Enthalpy and thermodynamic properties of SiC at temperatures up to 2900 K. J. Chem. Thermodyn. 3(3), 289–296 (1971)CrossRef Chekhovskoy, VYa.: Enthalpy and thermodynamic properties of SiC at temperatures up to 2900 K. J. Chem. Thermodyn. 3(3), 289–296 (1971)CrossRef
65.
go back to reference Porter, L.J., Yip, S., Li, J.: Atomistic modeling of finite-temperature properties of beta SiC. I. Lattice vibrations, heat capacity, and thermal expansion. J. Nucl. Mater. 246(1), 53–59 (1997)CrossRef Porter, L.J., Yip, S., Li, J.: Atomistic modeling of finite-temperature properties of beta SiC. I. Lattice vibrations, heat capacity, and thermal expansion. J. Nucl. Mater. 246(1), 53–59 (1997)CrossRef
66.
go back to reference Taylor, R.E., Groot, H., Ferrier, J.: Thermophysical properties of CVD SiC, thermophysical properties laboratory report TPRL 1336, School of Mechanical Engineerins, Purdue University (1993) Taylor, R.E., Groot, H., Ferrier, J.: Thermophysical properties of CVD SiC, thermophysical properties laboratory report TPRL 1336, School of Mechanical Engineerins, Purdue University (1993)
67.
go back to reference Su, J., Zhang, J., Guo, R., Lina, Z., Liua, M., Zhang, J., Chang, J., Hao, Y.: Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3. Mater. Des. 184, 108197 (2019)CrossRef Su, J., Zhang, J., Guo, R., Lina, Z., Liua, M., Zhang, J., Chang, J., Hao, Y.: Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3. Mater. Des. 184, 108197 (2019)CrossRef
68.
go back to reference King, E.G.: Low temperature heat capacities and entropies at 298.15 K of some oxides of gallium, germanium, molybdenum and niobium. J. Am. Chem. Soc. 80(8), 1799–1800 (1958)CrossRef King, E.G.: Low temperature heat capacities and entropies at 298.15 K of some oxides of gallium, germanium, molybdenum and niobium. J. Am. Chem. Soc. 80(8), 1799–1800 (1958)CrossRef
69.
go back to reference Liu, Q., Chen, Z., Zhou, X.: Electronic, thermal, and thermoelectric transport properties of ε-Ga2O3 from first principles. ACS Omega 7(14), 11643–11653 (2022)CrossRef Liu, Q., Chen, Z., Zhou, X.: Electronic, thermal, and thermoelectric transport properties of ε-Ga2O3 from first principles. ACS Omega 7(14), 11643–11653 (2022)CrossRef
70.
go back to reference Order, C., Einfeldt, S., Figge, S., Hommel, D.: Temperature dependence of the thermal expansion of GaN. Phys. Rev. B 72, 085218 (2005)CrossRef Order, C., Einfeldt, S., Figge, S., Hommel, D.: Temperature dependence of the thermal expansion of GaN. Phys. Rev. B 72, 085218 (2005)CrossRef
Metadata
Title
Analytical investigation of thermodynamic properties of power electronic semiconductor materials
Authors
Zafer Dogan
Tural Mehmetoglu
Publication date
19-05-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02167-4