Skip to main content
Top
Published in: Tribology Letters 1/2023

01-02-2023 | Original Paper

Analytical Theory of Ice-Skating Friction with Flat Contact

Published in: Tribology Letters | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although a thin meltwater layer that acts as lubricant attributes to the low friction on ice, there still lacks analytical theories that can forecast the friction force on ice. Based on the evolution of the thin meltwater layer, this study builds an analytical theory to the friction force on ice with flat contacts, which matches experimental measurement nicely. This study reveals that a dynamic balance between the ice melting caused by frictional heat and the water squeezing caused by slider regulates the thickness of the self-lubricating interstitial meltwater layer, which guarantees the low friction on ice. This analytical model provides a self-consistent explanation to the ice friction, which may help to regulate the friction on ice purposely.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kietzig, A.M., Hatzikiriakos, S.G., Englezos, P.: Physics of ice friction. J. Appl. Phys. 107, 081101 (2010)CrossRef Kietzig, A.M., Hatzikiriakos, S.G., Englezos, P.: Physics of ice friction. J. Appl. Phys. 107, 081101 (2010)CrossRef
2.
go back to reference Ovaska, M., Tuononen, A.J.: Multiscale imaging of wear tracks in ice skate friction. Tribol. Int. 121, 280–286 (2018)CrossRef Ovaska, M., Tuononen, A.J.: Multiscale imaging of wear tracks in ice skate friction. Tribol. Int. 121, 280–286 (2018)CrossRef
3.
go back to reference Tikanmäki, M., Sainio, P.: Experiments on friction of dry and wet ice. Cold Reg. Sci. Technol. 172, 102990 (2020)CrossRef Tikanmäki, M., Sainio, P.: Experiments on friction of dry and wet ice. Cold Reg. Sci. Technol. 172, 102990 (2020)CrossRef
4.
go back to reference Tuononen, A.J., Kriston, A., Persson, B.: Multiscale physics of rubber-ice friction. J. Chem. Phys. 145(11), 114703 (2016)CrossRef Tuononen, A.J., Kriston, A., Persson, B.: Multiscale physics of rubber-ice friction. J. Chem. Phys. 145(11), 114703 (2016)CrossRef
5.
go back to reference Liefferink, R.W., Hsia, F.C., Weber, B., Bonn, D.: Friction on ice: how temperature, pressure, and speed control the slipperiness of ice. Phys. Rev. X 11(1), 011025 (2021) Liefferink, R.W., Hsia, F.C., Weber, B., Bonn, D.: Friction on ice: how temperature, pressure, and speed control the slipperiness of ice. Phys. Rev. X 11(1), 011025 (2021)
6.
go back to reference Hong, J., Talalay, P., Zhang, N., Fan, X.: Controlling mechanism of temperature dependence of kinetic friction of ice. J. Tribol. 142(8), 081704 (2020)CrossRef Hong, J., Talalay, P., Zhang, N., Fan, X.: Controlling mechanism of temperature dependence of kinetic friction of ice. J. Tribol. 142(8), 081704 (2020)CrossRef
7.
go back to reference Weber, B., et al.: Molecular insight into the slipperiness of ice. J. Phys. Chem. Lett. 9(11), 2838–2842 (2018)CrossRef Weber, B., et al.: Molecular insight into the slipperiness of ice. J. Phys. Chem. Lett. 9(11), 2838–2842 (2018)CrossRef
8.
go back to reference Böttcher, R., Seidelmann, M., Scherge, M.: Sliding of UHMWPE on ice: experiment vs modeling. Cold Reg. Sci. Technol. 141, 171–180 (2017)CrossRef Böttcher, R., Seidelmann, M., Scherge, M.: Sliding of UHMWPE on ice: experiment vs modeling. Cold Reg. Sci. Technol. 141, 171–180 (2017)CrossRef
9.
go back to reference Yun, C., Choi, J.W., Kim, H., Kim, D., Kim, H.: Sliding on ice: real contact area, melted film thickness, and friction force. Int. J. Heat Mass Transfer 160, 120166 (2020)CrossRef Yun, C., Choi, J.W., Kim, H., Kim, D., Kim, H.: Sliding on ice: real contact area, melted film thickness, and friction force. Int. J. Heat Mass Transfer 160, 120166 (2020)CrossRef
10.
go back to reference Baurle, L., Szabo, D., Fauve, M., Rhyner, H., Spencer, N.D.: Sliding friction of polyethylene on ice: tribometer measurements. Tribol. Lett. 24(1), 77–84 (2006)CrossRef Baurle, L., Szabo, D., Fauve, M., Rhyner, H., Spencer, N.D.: Sliding friction of polyethylene on ice: tribometer measurements. Tribol. Lett. 24(1), 77–84 (2006)CrossRef
11.
go back to reference Kietzig, A.M., Hatzikiriakos, S.G., Englezos, P.: Ice friction: the effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys. 106, 024303 (2009)CrossRef Kietzig, A.M., Hatzikiriakos, S.G., Englezos, P.: Ice friction: the effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys. 106, 024303 (2009)CrossRef
12.
go back to reference Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., Valeri, S.: Friction of rough surfaces on ice: experiments and modeling. Wear 368–369, 258–266 (2016)CrossRef Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., Valeri, S.: Friction of rough surfaces on ice: experiments and modeling. Wear 368–369, 258–266 (2016)CrossRef
13.
go back to reference Oosterkamp, T.H., Boudewijn, T., van Leeuwen, J.M.J.: Skating on slippery ice. Europhys. News 50, 28–32 (2019)CrossRef Oosterkamp, T.H., Boudewijn, T., van Leeuwen, J.M.J.: Skating on slippery ice. Europhys. News 50, 28–32 (2019)CrossRef
14.
go back to reference Nagata, Y., Hama, T., Backus, E.H.G., Mezger, M., Bonn, D., Bonn, M., Sazaki, G.: The surface of ice under equilibrium and nonequilibrium conditions. Acc. Chem. Res. 52, 1006–1015 (2019)CrossRef Nagata, Y., Hama, T., Backus, E.H.G., Mezger, M., Bonn, D., Bonn, M., Sazaki, G.: The surface of ice under equilibrium and nonequilibrium conditions. Acc. Chem. Res. 52, 1006–1015 (2019)CrossRef
15.
go back to reference Slater, B., Michaelides, A.: Surface premelting of water ice. Nat. Rev. Chem. 3, 172–188 (2019)CrossRef Slater, B., Michaelides, A.: Surface premelting of water ice. Nat. Rev. Chem. 3, 172–188 (2019)CrossRef
16.
go back to reference Benet, J., Llombart, P., Sanz, E., MacDowell, L.G.: Premelting-induced smoothening of the ice-vapor interface. Phys. Rev. Lett. 117, 096101 (2016)CrossRef Benet, J., Llombart, P., Sanz, E., MacDowell, L.G.: Premelting-induced smoothening of the ice-vapor interface. Phys. Rev. Lett. 117, 096101 (2016)CrossRef
17.
go back to reference Llombart, P., Noya, E.G., Sibley, D.N., Archer, A.J., MacDowell, L.G.: Rounded layering transitions on the surface of ice. Phys. Rev. Lett. 124, 065702 (2020)CrossRef Llombart, P., Noya, E.G., Sibley, D.N., Archer, A.J., MacDowell, L.G.: Rounded layering transitions on the surface of ice. Phys. Rev. Lett. 124, 065702 (2020)CrossRef
18.
go back to reference Esteso, V., et al.: Premelting of ice adsorbed on a rock surface. Phys. Chem. Chem. Phys. 22, 11362 (2020)CrossRef Esteso, V., et al.: Premelting of ice adsorbed on a rock surface. Phys. Chem. Chem. Phys. 22, 11362 (2020)CrossRef
19.
go back to reference Michaelides, A., Slater, B.: Melting the ice one layer at a time. Proc. Natl. Acad. Sci. USA 114(2), 195–197 (2017)CrossRef Michaelides, A., Slater, B.: Melting the ice one layer at a time. Proc. Natl. Acad. Sci. USA 114(2), 195–197 (2017)CrossRef
20.
go back to reference Murata, K.I., Asakawa, H., Nagashima, K., Furukawa, Y., Sazaki, G.: Thermodynamic origin of surface melting on ice crystals. Proc. Natl. Acad. Sci. USA 113(44), E6741–E6748 (2016)CrossRef Murata, K.I., Asakawa, H., Nagashima, K., Furukawa, Y., Sazaki, G.: Thermodynamic origin of surface melting on ice crystals. Proc. Natl. Acad. Sci. USA 113(44), E6741–E6748 (2016)CrossRef
21.
go back to reference Sanchez, M.A., et al.: Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc. Natl. Acad. Sci. USA 114(2), 227–232 (2017)CrossRef Sanchez, M.A., et al.: Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc. Natl. Acad. Sci. USA 114(2), 227–232 (2017)CrossRef
22.
go back to reference Persson, B.N.J.: Ice friction: Role of non-uniform frictional heating and ice premelting. J. Chem. Phys. 143, 224701 (2015)CrossRef Persson, B.N.J.: Ice friction: Role of non-uniform frictional heating and ice premelting. J. Chem. Phys. 143, 224701 (2015)CrossRef
23.
go back to reference Le Berre, M., Pomeau, Y.: Theory of ice-skating. Int. J. Non-Linear Mech. 75, 77–86 (2015)CrossRef Le Berre, M., Pomeau, Y.: Theory of ice-skating. Int. J. Non-Linear Mech. 75, 77–86 (2015)CrossRef
24.
go back to reference van Leeuwen, J.M.J.: Skating on slippery ice. Sci. Post Phys. 3(6), 042 (2017)CrossRef van Leeuwen, J.M.J.: Skating on slippery ice. Sci. Post Phys. 3(6), 042 (2017)CrossRef
25.
go back to reference Lozowski, E., Szilder, K., Maw, S.: A model of ice friction for a speed skate blade. Sports Eng. 16(4), 239–253 (2013)CrossRef Lozowski, E., Szilder, K., Maw, S.: A model of ice friction for a speed skate blade. Sports Eng. 16(4), 239–253 (2013)CrossRef
26.
go back to reference Evans, D.C.B., Nye, J.F., Cheeseman, K.J.: The kinetic friction of ice. Proc. R. Soc. Loud. A. 347, 493–512 (1976)CrossRef Evans, D.C.B., Nye, J.F., Cheeseman, K.J.: The kinetic friction of ice. Proc. R. Soc. Loud. A. 347, 493–512 (1976)CrossRef
27.
go back to reference Oksanen, P., Keinonen, J.: The mechanism of friction of ice. Wear 78(3), 315–324 (1982)CrossRef Oksanen, P., Keinonen, J.: The mechanism of friction of ice. Wear 78(3), 315–324 (1982)CrossRef
28.
go back to reference Akkok, M., Ettles, C.M.M., Calabrese, S.J.: Parameters affecting the kinetic friction of ice. J. Tribol.-Trans. ASME. 109, 552–559 (1987)CrossRef Akkok, M., Ettles, C.M.M., Calabrese, S.J.: Parameters affecting the kinetic friction of ice. J. Tribol.-Trans. ASME. 109, 552–559 (1987)CrossRef
29.
go back to reference Makkonen, L.: A thermodynamic model of sliding friction. AIP Adv. 2(1), 012179 (2012)CrossRef Makkonen, L.: A thermodynamic model of sliding friction. AIP Adv. 2(1), 012179 (2012)CrossRef
30.
go back to reference Makkonen, L., Tikanmäki, M.: Modeling the friction of ice. Cold Reg. Sci. Tech. 102, 84–93 (2014)CrossRef Makkonen, L., Tikanmäki, M.: Modeling the friction of ice. Cold Reg. Sci. Tech. 102, 84–93 (2014)CrossRef
31.
go back to reference Penny A, Lozowski E, Forest T, Fong C, Maw S, Montgomery P, Sinha N. Speedskate ice friction: Review and numerical model—Fast 1.0. Phys. Chem. Ice 495–504 (2007) Penny A, Lozowski E, Forest T, Fong C, Maw S, Montgomery P, Sinha N. Speedskate ice friction: Review and numerical model—Fast 1.0. Phys. Chem. Ice 495–504 (2007)
32.
go back to reference Lozowski, E.P., Szilder, K.: Derivation and new analysis of a hydrodynamic model of speed skate ice friction. Int. J. Offshore Polar Eng. 23(2), 104–111 (2013) Lozowski, E.P., Szilder, K.: Derivation and new analysis of a hydrodynamic model of speed skate ice friction. Int. J. Offshore Polar Eng. 23(2), 104–111 (2013)
33.
go back to reference Lozowski, E.P., Szilder, K., Poirier, L.: A bobsleigh ice friction model. Int. J. Offshore Polar Eng. 24(1), 52–60 (2014) Lozowski, E.P., Szilder, K., Poirier, L.: A bobsleigh ice friction model. Int. J. Offshore Polar Eng. 24(1), 52–60 (2014)
34.
go back to reference van Leeuwen, J.M.J.: The friction of tilted skates on ice. SciPost Phys. 8(4), 059 (2020)CrossRef van Leeuwen, J.M.J.: The friction of tilted skates on ice. SciPost Phys. 8(4), 059 (2020)CrossRef
35.
36.
go back to reference Canale, L., Comtet, J., Niguès, A., Cohen, C., Clanet, C., Siria, A., Bocquet, L.: Nanorheology of interfacial water during ice gliding. Phys. Rev. X 9(4), 041025 (2019) Canale, L., Comtet, J., Niguès, A., Cohen, C., Clanet, C., Siria, A., Bocquet, L.: Nanorheology of interfacial water during ice gliding. Phys. Rev. X 9(4), 041025 (2019)
37.
go back to reference Poirier, L., Lozowski, E.P., Thompson, R.I.: Ice hardness in winter sports. Cold Reg. Sci. Tech. 67(3), 129–134 (2011)CrossRef Poirier, L., Lozowski, E.P., Thompson, R.I.: Ice hardness in winter sports. Cold Reg. Sci. Tech. 67(3), 129–134 (2011)CrossRef
38.
go back to reference Lienhard, J.H., IV., Lienhard, V.J.H.: A heat transfer textbook, 3rd edn. Cambridge University Press, Cambridge, MA (2000) Lienhard, J.H., IV., Lienhard, V.J.H.: A heat transfer textbook, 3rd edn. Cambridge University Press, Cambridge, MA (2000)
39.
go back to reference Lugt, P.M., Morales-Espejel, G.E.: A review of elasto-hydrodynamic lubrication theory. Tribol. Trans. 54(3), 470–496 (2011)CrossRef Lugt, P.M., Morales-Espejel, G.E.: A review of elasto-hydrodynamic lubrication theory. Tribol. Trans. 54(3), 470–496 (2011)CrossRef
40.
go back to reference Gong, R.Z., Li, D.Y., Wang, H.J., Han, L., Qin, D.Q.: Analytical solution of Reynolds equation under dynamic conditions. Proc IMechE Part J: J Eng. Tribol. 230(4), 416–427 (2015)CrossRef Gong, R.Z., Li, D.Y., Wang, H.J., Han, L., Qin, D.Q.: Analytical solution of Reynolds equation under dynamic conditions. Proc IMechE Part J: J Eng. Tribol. 230(4), 416–427 (2015)CrossRef
41.
go back to reference Chien, S.Y., Cramer, M.S., Untaroiu, A.: Compressible Reynolds equation for high-pressure gases. Phys. Fluids 29(11), 116101 (2017)CrossRef Chien, S.Y., Cramer, M.S., Untaroiu, A.: Compressible Reynolds equation for high-pressure gases. Phys. Fluids 29(11), 116101 (2017)CrossRef
42.
go back to reference Dubois, G.B., Ocvirk, F.W.: Analytical derivation and experimental evaluation of short-bearing approximation for full journal bearings. NACA, Report 1157 (1953) Dubois, G.B., Ocvirk, F.W.: Analytical derivation and experimental evaluation of short-bearing approximation for full journal bearings. NACA, Report 1157 (1953)
43.
go back to reference Bai, L., Yan, J., Zeng, Z., Ma, Y.: Cavitation in thin liquid layer: a review. Ultrason Sonochem. 66, 105092 (2020)CrossRef Bai, L., Yan, J., Zeng, Z., Ma, Y.: Cavitation in thin liquid layer: a review. Ultrason Sonochem. 66, 105092 (2020)CrossRef
44.
go back to reference Ashmore, J., del Pino, C., Mullin, T.: Cavitation in a lubrication flow between a moving sphere and a boundary. Phys. Rev. Lett. 94(12), 124501 (2005)CrossRef Ashmore, J., del Pino, C., Mullin, T.: Cavitation in a lubrication flow between a moving sphere and a boundary. Phys. Rev. Lett. 94(12), 124501 (2005)CrossRef
45.
go back to reference Jackson, R.L., Ghaednia, H., Pope, S.: A solution of rigid–perfectly plastic deep spherical indentation based on slip-line theory. Tribol. Lett. 58(3), 47 (2015)CrossRef Jackson, R.L., Ghaednia, H., Pope, S.: A solution of rigid–perfectly plastic deep spherical indentation based on slip-line theory. Tribol. Lett. 58(3), 47 (2015)CrossRef
46.
go back to reference Hsia, F.C., Elam, F.M., Bonn, D., Weber, B., Franklin, S.E.: Wear particle dynamics drive the difference between repeated and non-repeated reciprocated sliding. Tribol. Int. 142, 105983 (2020)CrossRef Hsia, F.C., Elam, F.M., Bonn, D., Weber, B., Franklin, S.E.: Wear particle dynamics drive the difference between repeated and non-repeated reciprocated sliding. Tribol. Int. 142, 105983 (2020)CrossRef
47.
go back to reference Bluhm, H., Inoue, T., Salmeron, M.: Friction of ice measured using lateral force microscopy. Phys. Rev. B 61(11), 7760–7765 (2000)CrossRef Bluhm, H., Inoue, T., Salmeron, M.: Friction of ice measured using lateral force microscopy. Phys. Rev. B 61(11), 7760–7765 (2000)CrossRef
48.
go back to reference Mielonen, K., Jiang, Y., Voyer, J., Diem, A., Hillman, L., Suvanto, M., Pakkanen, T.A.: Sliding friction of hierarchically micro–micro textured polymer surfaces on ice. Cold Reg. Sci. Technol. 163, 8–18 (2019)CrossRef Mielonen, K., Jiang, Y., Voyer, J., Diem, A., Hillman, L., Suvanto, M., Pakkanen, T.A.: Sliding friction of hierarchically micro–micro textured polymer surfaces on ice. Cold Reg. Sci. Technol. 163, 8–18 (2019)CrossRef
49.
go back to reference Du, F., Ke, P., Hong, P.: How ploughing and frictional melting regulate ice-skating friction. Friction. Accepted (2022) Du, F., Ke, P., Hong, P.: How ploughing and frictional melting regulate ice-skating friction. Friction. Accepted (2022)
50.
go back to reference Bejan, A.: Convection heat transfer, 3rd edn. Wiley, New York (2004) Bejan, A.: Convection heat transfer, 3rd edn. Wiley, New York (2004)
51.
go back to reference Ludwig, M., von Klitzing, R.: Recent progress in measurements of oscillatory forces and liquid properties under confinement. Curr. Opin. Colloid Interface Sci. 47, 137–152 (2020)CrossRef Ludwig, M., von Klitzing, R.: Recent progress in measurements of oscillatory forces and liquid properties under confinement. Curr. Opin. Colloid Interface Sci. 47, 137–152 (2020)CrossRef
52.
go back to reference Schlaich, A., Kappler, J., Netz, R.R.: Hydration friction in nanoconfinement: from bulk via interfacial to dry friction. Nano Lett. 17(10), 5969–5976 (2017)CrossRef Schlaich, A., Kappler, J., Netz, R.R.: Hydration friction in nanoconfinement: from bulk via interfacial to dry friction. Nano Lett. 17(10), 5969–5976 (2017)CrossRef
53.
go back to reference Ortiz-Young, D., Chiu, H.C., Kim, S., Voitchovsky, K., Riedo, E.: The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 4, 2482 (2013)CrossRef Ortiz-Young, D., Chiu, H.C., Kim, S., Voitchovsky, K., Riedo, E.: The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 4, 2482 (2013)CrossRef
54.
go back to reference Li, T.D., Gao, J.P., Szoszkiewicz, R., Landman, U., Riedo, E.: Structured and viscous water in subnanometer gaps. Phys. Rev. B 75(11), 115415 (2007)CrossRef Li, T.D., Gao, J.P., Szoszkiewicz, R., Landman, U., Riedo, E.: Structured and viscous water in subnanometer gaps. Phys. Rev. B 75(11), 115415 (2007)CrossRef
55.
go back to reference Goertz, M.P., Houston, J.E., Zhu, X.Y.: Hydrophilicity and the viscosity of interfacial water. Langmuir 23(10), 5491–5497 (2007)CrossRef Goertz, M.P., Houston, J.E., Zhu, X.Y.: Hydrophilicity and the viscosity of interfacial water. Langmuir 23(10), 5491–5497 (2007)CrossRef
56.
go back to reference Yang, Y., Asta, M., Laird, B.B.: Solid-liquid interfacial premelting. Phys. Rev. Lett. 110(9), 096102 (2013)CrossRef Yang, Y., Asta, M., Laird, B.B.: Solid-liquid interfacial premelting. Phys. Rev. Lett. 110(9), 096102 (2013)CrossRef
57.
go back to reference de Koning, J.J., de Groot, G., van Ingen, S.G.J.: Ice friction during speed skating. J. Biomech. 25(6), 565–571 (1992)CrossRef de Koning, J.J., de Groot, G., van Ingen, S.G.J.: Ice friction during speed skating. J. Biomech. 25(6), 565–571 (1992)CrossRef
58.
go back to reference Poirier, L., Lozowski, E.P., Maw, S., Stefanyshyn, D.J., Thompson, R.I.: Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14(2–4), 67–72 (2011)CrossRef Poirier, L., Lozowski, E.P., Maw, S., Stefanyshyn, D.J., Thompson, R.I.: Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14(2–4), 67–72 (2011)CrossRef
59.
go back to reference Houdijk, H., Wijker, A.J., De Koning, J.J., Bobbert, M.F., De Groot, G.: Ice friction in speed skating: can klapskates reduce ice frictional loss? Med. Sci. Sport Exer. 33(3), 499–504 (2001)CrossRef Houdijk, H., Wijker, A.J., De Koning, J.J., Bobbert, M.F., De Groot, G.: Ice friction in speed skating: can klapskates reduce ice frictional loss? Med. Sci. Sport Exer. 33(3), 499–504 (2001)CrossRef
60.
go back to reference Formenti, F., Minetti, A.E.: Human locomotion on ice: the evolution of ice-skating energetics through history. J. Exp. Biol. 210, 1825–1833 (2007)CrossRef Formenti, F., Minetti, A.E.: Human locomotion on ice: the evolution of ice-skating energetics through history. J. Exp. Biol. 210, 1825–1833 (2007)CrossRef
61.
go back to reference Federolf, P.A., Mills, R., Nigg, B.: Ice friction of flared ice hockey skate blades. J. Sports Sci. 26(11), 1201–1208 (2008)CrossRef Federolf, P.A., Mills, R., Nigg, B.: Ice friction of flared ice hockey skate blades. J. Sports Sci. 26(11), 1201–1208 (2008)CrossRef
Metadata
Title
Analytical Theory of Ice-Skating Friction with Flat Contact
Publication date
01-02-2023
Published in
Tribology Letters / Issue 1/2023
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-022-01677-1

Other articles of this Issue 1/2023

Tribology Letters 1/2023 Go to the issue

Premium Partners