Skip to main content
Top

09-08-2024 | Research

Analyzing Emotional Trends from X Platform Using SenticNet: A Comparative Analysis with Cryptocurrency Price

Authors: Moein Shahiki Tash, Zahra Ahani, Mohim Tash, Olga Kolesnikova, Grigori Sidorov

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigates the relationship between emotional trends derived from X platform data and the market dynamics of prominent cryptocurrencies—Cardano, Binance, Fantom, Matic, and Ripple—during the period from October 2022 to March 2023. Utilizing SenticNet, key emotions such as fear and anxiety, rage and anger, grief and sadness, delight and pleasantness, enthusiasm and eagerness, and delight and joy were identified. The emotional data and cryptocurrency price data, sourced bi-weekly, were analyzed to uncover significant correlations. The findings reveal that emotions such as delight and pleasantness and delight and joy have the strongest positive correlations with Fantom’s price, while delight and pleasantness exhibit the strongest negative correlations with Cardano and Binance. The study highlights the nuanced impact of specific emotional states on cryptocurrency prices, offering valuable insights for market participants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
October second half.
 
2
December second half.
 
3
December first half.
 
Literature
1.
go back to reference Zubair M, Ali J, Alhussein M, Hassan S, Aurangzeb K, Umair M. An improved machine learning-driven framework for cryptocurrencies price prediction with sentimental cautioning. IEEE Access. 2024. Zubair M, Ali J, Alhussein M, Hassan S, Aurangzeb K, Umair M. An improved machine learning-driven framework for cryptocurrencies price prediction with sentimental cautioning. IEEE Access. 2024.
2.
go back to reference Tandon C, Revankar S, Parihar SS. How can we predict the impact of the social media messages on the value of cryptocurrency? Insights from big data analytics. Int J Inf Manag Data Insights. 2021;1(2):100035. Tandon C, Revankar S, Parihar SS. How can we predict the impact of the social media messages on the value of cryptocurrency? Insights from big data analytics. Int J Inf Manag Data Insights. 2021;1(2):100035.
3.
go back to reference Mao R, Liu Q, He K, Li W, Cambria E. The biases of pre-trained language models: an empirical study on prompt-based sentiment analysis and emotion detection. IEEE Trans Affect Comput. 2022;14(3):1743–53.CrossRef Mao R, Liu Q, He K, Li W, Cambria E. The biases of pre-trained language models: an empirical study on prompt-based sentiment analysis and emotion detection. IEEE Trans Affect Comput. 2022;14(3):1743–53.CrossRef
4.
go back to reference Li W, Zhu L, Mao R, Cambria E. Skier: a symbolic knowledge integrated model for conversational emotion recognition. In: Proceedings of the AAAI conference on artificial intelligence, vol 37, pp. 13121–9. 2023. Li W, Zhu L, Mao R, Cambria E. Skier: a symbolic knowledge integrated model for conversational emotion recognition. In: Proceedings of the AAAI conference on artificial intelligence, vol 37, pp. 13121–9. 2023.
5.
go back to reference Fan C, Lin J, Mao R, Cambria E. Fusing pairwise modalities for emotion recognition in conversations. Inf Fusion. 2024;106:102306.CrossRef Fan C, Lin J, Mao R, Cambria E. Fusing pairwise modalities for emotion recognition in conversations. Inf Fusion. 2024;106:102306.CrossRef
6.
go back to reference Badlani B, Yadav RA, Kumar A. Psychological impact of cryptocurrency volatility on investor emotions and decision making. J ReAttach Therapy Develop Diversit. 2023;6(7s):204–14. Badlani B, Yadav RA, Kumar A. Psychological impact of cryptocurrency volatility on investor emotions and decision making. J ReAttach Therapy Develop Diversit. 2023;6(7s):204–14.
7.
go back to reference Yin L, Nie J, Han L. Understanding cryptocurrency volatility: the role of oil market shocks. Int Rev Econ Finance. 2021;72:233–53.CrossRef Yin L, Nie J, Han L. Understanding cryptocurrency volatility: the role of oil market shocks. Int Rev Econ Finance. 2021;72:233–53.CrossRef
8.
go back to reference Bouri E, Gupta R, Roubaud D. Herding behaviour in cryptocurrencies. Financ Res Lett. 2019;29:216–21.CrossRef Bouri E, Gupta R, Roubaud D. Herding behaviour in cryptocurrencies. Financ Res Lett. 2019;29:216–21.CrossRef
9.
go back to reference Ji Q, Bouri E, Lau CKM, Roubaud D. Dynamic connectedness and integration in cryptocurrency markets. Int Rev Financ Anal. 2019;63:257–72.CrossRef Ji Q, Bouri E, Lau CKM, Roubaud D. Dynamic connectedness and integration in cryptocurrency markets. Int Rev Financ Anal. 2019;63:257–72.CrossRef
10.
go back to reference Glaser F, Zimmermann K, Haferkorn M, Weber MC, Siering M. Bitcoin-asset or currency? Revealing users’ hidden intentions. Revealing Users’ Hidden Intentions (April 15, 2014). ECIS. 2014. Glaser F, Zimmermann K, Haferkorn M, Weber MC, Siering M. Bitcoin-asset or currency? Revealing users’ hidden intentions. Revealing Users’ Hidden Intentions (April 15, 2014). ECIS. 2014.
11.
go back to reference Baek C, Elbeck M. Bitcoins as an investment or speculative vehicle? A first look. Appl Econ Lett. 2015;22(1):30–4.CrossRef Baek C, Elbeck M. Bitcoins as an investment or speculative vehicle? A first look. Appl Econ Lett. 2015;22(1):30–4.CrossRef
12.
go back to reference Makarov I, Schoar A. Trading and arbitrage in cryptocurrency markets. J Financ Econ. 2020;135(2):293–319.CrossRef Makarov I, Schoar A. Trading and arbitrage in cryptocurrency markets. J Financ Econ. 2020;135(2):293–319.CrossRef
13.
go back to reference Zhou Z, Song Z, Xiao H, Ren T. Multi-source data driven cryptocurrency price movement prediction and portfolio optimization. Expert Syst Appl. 2023;219:119600.CrossRef Zhou Z, Song Z, Xiao H, Ren T. Multi-source data driven cryptocurrency price movement prediction and portfolio optimization. Expert Syst Appl. 2023;219:119600.CrossRef
14.
go back to reference Kraaijeveld O, De Smedt J. The predictive power of public twitter sentiment for forecasting cryptocurrency prices. J Int Finan Markets Inst Money. 2020;65:101188.CrossRef Kraaijeveld O, De Smedt J. The predictive power of public twitter sentiment for forecasting cryptocurrency prices. J Int Finan Markets Inst Money. 2020;65:101188.CrossRef
15.
go back to reference Kristoufek L. BitCoin meets Google Trends and Wikipedia: quantifying the relationship between phenomena of the internet era. Sci Rep. 2013;3(1):3415.CrossRef Kristoufek L. BitCoin meets Google Trends and Wikipedia: quantifying the relationship between phenomena of the internet era. Sci Rep. 2013;3(1):3415.CrossRef
16.
go back to reference Naeem MA, Mbarki I, Suleman MT, Vo XV, Shahzad SJH. Does twitter happiness sentiment predict cryptocurrency? Int Rev Financ. 2021;21(4):1529–38.CrossRef Naeem MA, Mbarki I, Suleman MT, Vo XV, Shahzad SJH. Does twitter happiness sentiment predict cryptocurrency? Int Rev Financ. 2021;21(4):1529–38.CrossRef
17.
go back to reference Valencia F, Gómez-Espinosa A, Valdés-Aguirre B. Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy. 2019;21(6):589.CrossRef Valencia F, Gómez-Espinosa A, Valdés-Aguirre B. Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy. 2019;21(6):589.CrossRef
18.
go back to reference Gurrib I, Kamalov F. Predicting bitcoin price movements using sentiment analysis: a machine learning approach. Stud Econ Financ. 2022;39(3):347–64.CrossRef Gurrib I, Kamalov F. Predicting bitcoin price movements using sentiment analysis: a machine learning approach. Stud Econ Financ. 2022;39(3):347–64.CrossRef
19.
go back to reference Wołk K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020;37(2):12493.CrossRef Wołk K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020;37(2):12493.CrossRef
20.
go back to reference Cambria E, Liu Q, Decherchi S, Xing F, Kwok K. Senticnet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis. In: Proceedings of the Thirteenth language resources and evaluation conference, pp. 3829–39. 2022. Cambria E, Liu Q, Decherchi S, Xing F, Kwok K. Senticnet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis. In: Proceedings of the Thirteenth language resources and evaluation conference, pp. 3829–39. 2022.
21.
go back to reference Cambria E, Havasi C, Hussain A. Senticnet 2: a semantic and affective resource for opinion mining and sentiment analysis. In: Twenty-fifth international FLAIRS Conference. 2012. Cambria E, Havasi C, Hussain A. Senticnet 2: a semantic and affective resource for opinion mining and sentiment analysis. In: Twenty-fifth international FLAIRS Conference. 2012.
23.
go back to reference Dag A, Dag AZ, Asilkalkan A, Simsek S, Delen D. A tree augmented Naïve Bayes-based methodology for classifying cryptocurrency trends. J Bus Res. 2023;156:113522.CrossRef Dag A, Dag AZ, Asilkalkan A, Simsek S, Delen D. A tree augmented Naïve Bayes-based methodology for classifying cryptocurrency trends. J Bus Res. 2023;156:113522.CrossRef
24.
go back to reference Jang H, Lee J. An empirical study on modeling and prediction of bitcoin prices with Bayesian neural networks based on blockchain information. Ieee Access. 2017;6:5427–37.CrossRef Jang H, Lee J. An empirical study on modeling and prediction of bitcoin prices with Bayesian neural networks based on blockchain information. Ieee Access. 2017;6:5427–37.CrossRef
25.
go back to reference Li B. Research on WNN modeling for gold price forecasting based on improved artificial bee colony algorithm. Comput Intell Neurosci. 2014;2014:2–2.CrossRef Li B. Research on WNN modeling for gold price forecasting based on improved artificial bee colony algorithm. Comput Intell Neurosci. 2014;2014:2–2.CrossRef
26.
go back to reference Mern J, Anderson S, Poothokaran J. Using bitcoin ledger network data to predict the price of bitcoin. cs229. stanford. edu. 2017. Mern J, Anderson S, Poothokaran J. Using bitcoin ledger network data to predict the price of bitcoin. cs229. stanford. edu. 2017.
27.
go back to reference Sami I, Junejo KN. Predicting future gold rates using machine learning approach. Int J Adv Comp Sci Appl. 2017;8(12) Sami I, Junejo KN. Predicting future gold rates using machine learning approach. Int J Adv Comp Sci Appl. 2017;8(12)
28.
go back to reference Weng B, Ahmed MA, Megahed FM. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst Appl. 2017;79:153–63.CrossRef Weng B, Ahmed MA, Megahed FM. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst Appl. 2017;79:153–63.CrossRef
29.
go back to reference Tash M, Armenta-Segura J, Ahani Z, Kolesnikova O, Sidorov G, Gelbukh A. Lidoma@ dravidianlangtech: convolutional neural networks for studying correlation between lexical features and sentiment polarity in tamil and tulu languages. In: Proceedings of the third workshop on speech and language technologies for dravidian languages, pp. 180–185. 2023. Tash M, Armenta-Segura J, Ahani Z, Kolesnikova O, Sidorov G, Gelbukh A. Lidoma@ dravidianlangtech: convolutional neural networks for studying correlation between lexical features and sentiment polarity in tamil and tulu languages. In: Proceedings of the third workshop on speech and language technologies for dravidian languages, pp. 180–185. 2023.
30.
go back to reference Shahiki-Tash M, Armenta-Segura J, Kolesnikova O, Sidorov G, Gelbukh A. Lidoma at hope2023iberlef: hope speech detection using lexical features and convolutional neural networks. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), Co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. Org. 2023. Shahiki-Tash M, Armenta-Segura J, Kolesnikova O, Sidorov G, Gelbukh A. Lidoma at hope2023iberlef: hope speech detection using lexical features and convolutional neural networks. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), Co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. Org. 2023.
31.
go back to reference Bouri E, Gupta R. Predicting bitcoin returns: comparing the roles of newspaper-and internet search-based measures of uncertainty. Financ Res Lett. 2021;38:101398.CrossRef Bouri E, Gupta R. Predicting bitcoin returns: comparing the roles of newspaper-and internet search-based measures of uncertainty. Financ Res Lett. 2021;38:101398.CrossRef
32.
go back to reference Colianni S, Rosales S, Signorotti M. Algorithmic trading of cryptocurrency based on twitter sentiment analysis. CS229 Project. 2015;1(5):1–4. Colianni S, Rosales S, Signorotti M. Algorithmic trading of cryptocurrency based on twitter sentiment analysis. CS229 Project. 2015;1(5):1–4.
33.
go back to reference Tash MS, Kolesnikova O, Ahani Z, Sidorov G. Psycholinguistic and emotion analysis of cryptocurrency discourse on X platform. Sci Rep. 2024;14(1):8585. Tash MS, Kolesnikova O, Ahani Z, Sidorov G. Psycholinguistic and emotion analysis of cryptocurrency discourse on X platform. Sci Rep. 2024;14(1):8585.
35.
go back to reference Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. Noise reduction in speech processing, 1–4. 2009. Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. Noise reduction in speech processing, 1–4. 2009.
Metadata
Title
Analyzing Emotional Trends from X Platform Using SenticNet: A Comparative Analysis with Cryptocurrency Price
Authors
Moein Shahiki Tash
Zahra Ahani
Mohim Tash
Olga Kolesnikova
Grigori Sidorov
Publication date
09-08-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10335-8

Premium Partner