Skip to main content
Top

2024 | OriginalPaper | Chapter

Analyzing Nonlinear Structures with Random Excitation Using Integral Quadratic Constraints

Authors : Sze Kwan Cheah, Ryan J Caverly

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modeling the response of nonlinear structures due to random excitation is crucial for the design of mechanical systems, including the estimation of loading on mechanical joints and the fatigue life of nonlinear components. This chapter presents a method for bounding the maximum variance of the output response of a nonlinear system under random excitation of known power spectral density. The proposed approach leverages integral quadratic constraints (IQCs) that enclose the relationship between inputs and outputs of the nonlinearity sufficiently for analysis. While IQCs have traditionally been employed in robust control to analyze stability and performance, recent advancements have extended its applications to analyzing optimization algorithm rate of convergence and stability of transitional flows. In this chapter, we explore an optimization-based algorithm that harnesses different IQCs to bound the nonlinearities in the system. To validate the efficacy of the proposed algorithm, we apply it to the analysis of the Duffing equation, a well-known nonlinear oscillator. Results demonstrate the effectiveness of the algorithm in bounding the maximum variance of the system’s response and its potential for application in the design and analysis of nonlinear structures subject to random vibration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems, vol. 1. Springer, Berlin (2019) Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems, vol. 1. Springer, Berlin (2019)
2.
3.
go back to reference Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRef Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRef
4.
go back to reference Schoneman, J.D., Allen, M.S., Kuether, R.J.: Relationships between nonlinear normal modes and response to random inputs. Mech. Syst. Signal Process. 84, 184–199 (2017)CrossRef Schoneman, J.D., Allen, M.S., Kuether, R.J.: Relationships between nonlinear normal modes and response to random inputs. Mech. Syst. Signal Process. 84, 184–199 (2017)CrossRef
5.
go back to reference Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints. IEEE Trans. Autom. Control 42(6), 819–830 (1997)MathSciNetCrossRef Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints. IEEE Trans. Autom. Control 42(6), 819–830 (1997)MathSciNetCrossRef
6.
go back to reference Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via integral quadratic constraints. SIAM J. Optim. 26(1), 57–95 (2016)MathSciNetCrossRef Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via integral quadratic constraints. SIAM J. Optim. 26(1), 57–95 (2016)MathSciNetCrossRef
7.
go back to reference Kalur, A., Mushtaq, T., Seiler, P., Hemati, M.S.: Estimating regions of attraction for transitional flows using quadratic constraints. IEEE Control Syst. Lett. 6, 482–487 (2021)MathSciNetCrossRef Kalur, A., Mushtaq, T., Seiler, P., Hemati, M.S.: Estimating regions of attraction for transitional flows using quadratic constraints. IEEE Control Syst. Lett. 6, 482–487 (2021)MathSciNetCrossRef
8.
go back to reference Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)CrossRef Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)CrossRef
9.
go back to reference El Ghaoui, L., Niculescu, S.l.: Adv. Linear Matrix Inequality Methods in Control. SIAM, Philadelphia (2000) El Ghaoui, L., Niculescu, S.l.: Adv. Linear Matrix Inequality Methods in Control. SIAM, Philadelphia (2000)
10.
go back to reference Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. In: Proceedings of the CACSD Conference, Taipei (2004) Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. In: Proceedings of the CACSD Conference, Taipei (2004)
11.
go back to reference ApS, M.: The MOSEK optimization toolbox for MATLAB manual. Version 10.0. (2023) ApS, M.: The MOSEK optimization toolbox for MATLAB manual. Version 10.0. (2023)
Metadata
Title
Analyzing Nonlinear Structures with Random Excitation Using Integral Quadratic Constraints
Authors
Sze Kwan Cheah
Ryan J Caverly
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_14