Skip to main content
Top
Published in:

28-02-2024

ANFIS-based impedance analysis of an infinite array of rectangular microstrip antennas

Authors: Mohammad Amin Kazemi, Saeed Reza Ostadzadeh

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the results of an efficient analysis–based on adaptive network fuzzy inference systems (ANFIS)–of the impedance an infinite array of rectangular microstrip antennas. In the proposed modeling approach, first, a number of input–output pairs (inputs include spacing between antennas, outputs include resonant frequency, quality factor, and input resistance) are computed from full-wave methods, and they are then used in the training process. An advantage of the proposed model in comparison with full-wave and approximate methods is that, after convergence of the training process, it bypasses the repeated use of complex computations for new inputs presented to it without any restriction. In addition, a comparison of the proposed model with those related to a single rectangular microstrip antenna shows considerable differences, especially for input resistance and quality factor, which is of importance in practical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sidney, P.A.: Adaptive arrays. IEEE Trans. Antennas Propagat. 24(5), 587–598 (1976) Sidney, P.A.: Adaptive arrays. IEEE Trans. Antennas Propagat. 24(5), 587–598 (1976)
2.
go back to reference Pozar, D.M., et al.: Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds. IEEE Trans. Antennas Propagat. 32(10), 1101–1107 (1984)CrossRef Pozar, D.M., et al.: Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds. IEEE Trans. Antennas Propagat. 32(10), 1101–1107 (1984)CrossRef
3.
go back to reference Kang, H. Lee., Sharad R. Laxpati.: FDTD analysis of an infinite array of microstrip patches. In: IEEE Antennas and Propagation Society International Symposium, pp. 21–26, (July 1996) Kang, H. Lee., Sharad R. Laxpati.: FDTD analysis of an infinite array of microstrip patches. In: IEEE Antennas and Propagation Society International Symposium, pp. 21–26, (July 1996)
4.
go back to reference Pues, H., Van de Capelle, A.: Accurate transmission-line model for the rectangular microstrip antenna. IEE Pro. 131(6), 334–340 (1984) Pues, H., Van de Capelle, A.: Accurate transmission-line model for the rectangular microstrip antenna. IEE Pro. 131(6), 334–340 (1984)
5.
go back to reference Vanlil, E.H., Van de Capelle, A.R.: Transmission line model for mutual coupling between microstrip antennas. IEEE Trans. Electromag. Compat. 32(4), 816–821 (1984) Vanlil, E.H., Van de Capelle, A.R.: Transmission line model for mutual coupling between microstrip antennas. IEEE Trans. Electromag. Compat. 32(4), 816–821 (1984)
6.
go back to reference Bahl, I. J., Bhartia, P.: Microstrip Antennas, 17. K. F. Lee and W. Chen, Advances in Microstrip Artech House, Dedham, MA, 1980. Bahl, I. J., Bhartia, P.: Microstrip Antennas, 17. K. F. Lee and W. Chen, Advances in Microstrip Artech House, Dedham, MA, 1980.
7.
go back to reference Akdagli, A., Guney, K.: Effective patch radius expression obtained using a genetic algorithm for the resonant frequency of electrically thin and thick circular microstrip antennas. Proc. Inst. Elect. Eng. 147, 156–159 (2000) Akdagli, A., Guney, K.: Effective patch radius expression obtained using a genetic algorithm for the resonant frequency of electrically thin and thick circular microstrip antennas. Proc. Inst. Elect. Eng. 147, 156–159 (2000)
8.
go back to reference Karaboga, D., Guney, K., Kaplan, A., Akdagli, A.: A new effective side length expression obtained using a modified tabu search algorithm for the resonant frequency of a triangular microstrip antenna. Int. J. RF Microw. Millim. Wave Comput. Aided Eng. 8, 4–10 (1998)CrossRef Karaboga, D., Guney, K., Kaplan, A., Akdagli, A.: A new effective side length expression obtained using a modified tabu search algorithm for the resonant frequency of a triangular microstrip antenna. Int. J. RF Microw. Millim. Wave Comput. Aided Eng. 8, 4–10 (1998)CrossRef
9.
go back to reference Liu, Q., Chew, W.C.: Curve-fitting formulas for fast determination of accurate resonant frequency of circular microstrip patches. Proc. Inst. Elect. Eng. 135, 289–292 (1988) Liu, Q., Chew, W.C.: Curve-fitting formulas for fast determination of accurate resonant frequency of circular microstrip patches. Proc. Inst. Elect. Eng. 135, 289–292 (1988)
10.
go back to reference Kara, M.: Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates. Microwave Opt. Technol. Lett. 12, 131–136 (1996)CrossRef Kara, M.: Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates. Microwave Opt. Technol. Lett. 12, 131–136 (1996)CrossRef
11.
go back to reference Ozer, S., Guney, K., Kaplan, A.: Computation of the resonant frequency of electrically thin and thick rectangular microstrip antennas with the use of fuzzy inference systems. Int. J. RF Microw. Millim. Wave Comput. Aided Eng. 10, 108–119 (2000)CrossRef Ozer, S., Guney, K., Kaplan, A.: Computation of the resonant frequency of electrically thin and thick rectangular microstrip antennas with the use of fuzzy inference systems. Int. J. RF Microw. Millim. Wave Comput. Aided Eng. 10, 108–119 (2000)CrossRef
12.
go back to reference Turker, N., Gunes, F., Yildirim, T.: Artificial neural design of microstrip antennas. Turk. J. Elec. Eng. 14(3), 445–453 (2006) Turker, N., Gunes, F., Yildirim, T.: Artificial neural design of microstrip antennas. Turk. J. Elec. Eng. 14(3), 445–453 (2006)
13.
go back to reference Güney, K., Erler, M., Sagiroglu, S.: Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas. Electromagnetics 20(5), 387–400 (2000)CrossRef Güney, K., Erler, M., Sagiroglu, S.: Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas. Electromagnetics 20(5), 387–400 (2000)CrossRef
14.
go back to reference Karaboga, D., Güney, K., Sagiroglu, S., Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc. Microw. Antennas Propagat. 146(5), 155–159 (1999)CrossRef Karaboga, D., Güney, K., Sagiroglu, S., Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc. Microw. Antennas Propagat. 146(5), 155–159 (1999)CrossRef
15.
go back to reference Kalini, A., Sagiroglu, S., Sarikoc, F.: Parallel ant colony optimization algorithm based neural method for determining resonant frequencies of various microstrip antennas. Electromagnetics 30(5), 463–481 (2010)CrossRef Kalini, A., Sagiroglu, S., Sarikoc, F.: Parallel ant colony optimization algorithm based neural method for determining resonant frequencies of various microstrip antennas. Electromagnetics 30(5), 463–481 (2010)CrossRef
16.
go back to reference Sinan Gultekin, S., Guney, K., Sagiroglu, S.: Neural networks for the calculation of bandwidth of rectangular microstrip antennas. J. Adv. Geosp. Sci. Technol. (JAGST) 15(1), 147–160 (2013) Sinan Gultekin, S., Guney, K., Sagiroglu, S.: Neural networks for the calculation of bandwidth of rectangular microstrip antennas. J. Adv. Geosp. Sci. Technol. (JAGST) 15(1), 147–160 (2013)
17.
go back to reference Kayabasi, A.: Analysis and synthesis of equilateral triangular ring microstrip antenna using support vector machine. ACES J. 33, 6 (2018) Kayabasi, A.: Analysis and synthesis of equilateral triangular ring microstrip antenna using support vector machine. ACES J. 33, 6 (2018)
18.
go back to reference Angiulli, G., Versaci, M.: Resonant frequency evaluation of microstrip antennas using a neural-fuzzy approach. IEEE Trans. Antennas Propagat. 39, 3 (2003) Angiulli, G., Versaci, M.: Resonant frequency evaluation of microstrip antennas using a neural-fuzzy approach. IEEE Trans. Antennas Propagat. 39, 3 (2003)
19.
go back to reference Guney, K., Sarikaya, N.: A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas. IEEE Trans. Antennas Propagat 55(3), 659–668 (2007)CrossRef Guney, K., Sarikaya, N.: A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas. IEEE Trans. Antennas Propagat 55(3), 659–668 (2007)CrossRef
20.
go back to reference Rop, K.V., Konditi, D.B.O., Ouma, H.A., Musyoki, S.M.: Parameter optimization in design of a rectangular microstrip patch antenna using adaptive neuro-fuzzy inference system technique. Int. J. Techn. Phys. Probl. Eng. (IJTPE) 4(3), 16–23 (2012) Rop, K.V., Konditi, D.B.O., Ouma, H.A., Musyoki, S.M.: Parameter optimization in design of a rectangular microstrip patch antenna using adaptive neuro-fuzzy inference system technique. Int. J. Techn. Phys. Probl. Eng. (IJTPE) 4(3), 16–23 (2012)
21.
go back to reference Rop, K.V., Konditi, D.B.O., Ouma, H.A., Musyoki, S.M.: Application of adaptive neuro-fuzzy inference system technique in design of rectangular microstrip patch antenna. J. Adv. Geospat. Sci. Technol. (JAGST) 15(1), 147–160 (2013) Rop, K.V., Konditi, D.B.O., Ouma, H.A., Musyoki, S.M.: Application of adaptive neuro-fuzzy inference system technique in design of rectangular microstrip patch antenna. J. Adv. Geospat. Sci. Technol. (JAGST) 15(1), 147–160 (2013)
22.
go back to reference Jacobs, J.P.: Efficient resonant frequency modeling for dual-Band microstrip antennas by Gaussian process regression. IEEE Antennas Wirel. Propagat. Lett. 14, 337–341 (2015)CrossRef Jacobs, J.P.: Efficient resonant frequency modeling for dual-Band microstrip antennas by Gaussian process regression. IEEE Antennas Wirel. Propagat. Lett. 14, 337–341 (2015)CrossRef
23.
go back to reference Sri Rama Krishna, K.: Bandwidth and mutual coupling analysis of a circular microstrip MIMO antenna using artificial neural networks. Arab. J. Sci. Eng. 41, 3231–3238 (2016)CrossRef Sri Rama Krishna, K.: Bandwidth and mutual coupling analysis of a circular microstrip MIMO antenna using artificial neural networks. Arab. J. Sci. Eng. 41, 3231–3238 (2016)CrossRef
24.
go back to reference Sotyohadi*, Riken Afandi, and Dony Rachmad Hadi, “Design and Bandwidth optimization on triangle patch microstrip antenna for WLAN 2.4 GHz “, In:3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017). Sotyohadi*, Riken Afandi, and Dony Rachmad Hadi, “Design and Bandwidth optimization on triangle patch microstrip antenna for WLAN 2.4 GHz “, In:3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017).
25.
go back to reference Jang, J.-S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRef Jang, J.-S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)CrossRef
26.
go back to reference Ostadzadeh, S.R.: Application of ANFIS technique for wide-band modeling of overvoltage of single-conductor overhead lines with arrester above dispersive and two-layer soils. AUT J. Elec. Eng. 55(2), 241–254 (2023) Ostadzadeh, S.R.: Application of ANFIS technique for wide-band modeling of overvoltage of single-conductor overhead lines with arrester above dispersive and two-layer soils. AUT J. Elec. Eng. 55(2), 241–254 (2023)
27.
go back to reference Aghajani, V., Sajjadi, S.S., Ostadzadeh, S.R.: Design of grounding vertical rods buried in complex soils based on adaptive network-based fuzzy inference systems. J. Commun. Eng. 7, 2 (2018) Aghajani, V., Sajjadi, S.S., Ostadzadeh, S.R.: Design of grounding vertical rods buried in complex soils based on adaptive network-based fuzzy inference systems. J. Commun. Eng. 7, 2 (2018)
28.
go back to reference Christodoulous, C., Georgiopoulos, M.: Applications of Neural Networks in Electromagnetics. Artech House, Boston, MA (2001) Christodoulous, C., Georgiopoulos, M.: Applications of Neural Networks in Electromagnetics. Artech House, Boston, MA (2001)
29.
go back to reference Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern.. SMC-15, 1 (1985). Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern.. SMC-15, 1 (1985).
30.
go back to reference Jackson, D.R., Alexopoulo, N.G.: Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Trans. Antennas Propagat. 39(3), 407–410 (1991)CrossRef Jackson, D.R., Alexopoulo, N.G.: Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Trans. Antennas Propagat. 39(3), 407–410 (1991)CrossRef
31.
go back to reference Bahrami, A., Ostadzadeh, S.R.: Back scattering from single, finite, and infinite array of nonlinear antennas based on intelligent water drops. Int. J. Comput. Math. Electr. Electron. Eng. 38, 2040–2056 (2019)CrossRef Bahrami, A., Ostadzadeh, S.R.: Back scattering from single, finite, and infinite array of nonlinear antennas based on intelligent water drops. Int. J. Comput. Math. Electr. Electron. Eng. 38, 2040–2056 (2019)CrossRef
32.
go back to reference Samiian, H., Ostadzadeh, S.R., Mirzaie, A.: Application of intelligent water drops in transient analysis of single conductor overhead lines terminated to grid-grounded arrester under direct lightning strikes. J. Commun. Eng. 5(1), 50–59 (2016) Samiian, H., Ostadzadeh, S.R., Mirzaie, A.: Application of intelligent water drops in transient analysis of single conductor overhead lines terminated to grid-grounded arrester under direct lightning strikes. J. Commun. Eng. 5(1), 50–59 (2016)
33.
go back to reference Bahrami, A., Ostadzadeh, S.R.: Comprehensively efficient analysis of nonlinear wire scatterers considering lossy ground and multi-tone excitations. Appl. Comput. Electromagn. Soc. J. (ACES) 35(8), 878–886 (2020)CrossRef Bahrami, A., Ostadzadeh, S.R.: Comprehensively efficient analysis of nonlinear wire scatterers considering lossy ground and multi-tone excitations. Appl. Comput. Electromagn. Soc. J. (ACES) 35(8), 878–886 (2020)CrossRef
Metadata
Title
ANFIS-based impedance analysis of an infinite array of rectangular microstrip antennas
Authors
Mohammad Amin Kazemi
Saeed Reza Ostadzadeh
Publication date
28-02-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02140-1