Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties

Author : Simona E. Hunyadi Murph

Published in: Anisotropic and Shape-Selective Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, we highlight recent innovations from our laboratory by featuring uniquely shaped nanostructures and how their morphology and dimension affect their physico-chemical properties and subsequently their applications. We aim to cover a wide range of applications including optical and plasmonic applications, sensing and imaging, catalytic and photocatalytic applications, bio-medical and environmental implications as well as energy related applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Doering, W.E., and S.M. Nie. 2002. Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. The Journal of Physical Chemistry B 106: 311–317.CrossRef Doering, W.E., and S.M. Nie. 2002. Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. The Journal of Physical Chemistry B 106: 311–317.CrossRef
2.
go back to reference Fedlheim, D.L., and C.A. Foss. 2001. Metal Nanoparticles: Synthesis, Characterization, and Applications. New York: Marcel Dekker Inc. Fedlheim, D.L., and C.A. Foss. 2001. Metal Nanoparticles: Synthesis, Characterization, and Applications. New York: Marcel Dekker Inc.
3.
go back to reference Murphy, C.J., T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li. 2005. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications (Feature Article; a Top Five ACS article by citations, National Chemistry Week, 2007). The Journal of Physical Chemistry B 109: 13857–13870.CrossRef Murphy, C.J., T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li. 2005. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications (Feature Article; a Top Five ACS article by citations, National Chemistry Week, 2007). The Journal of Physical Chemistry B 109: 13857–13870.CrossRef
4.
go back to reference Murphy, C.J., A.M. Gole, S. Hunyadi Murph, and C.J. Orendorff. 2006. One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry 45 (19): 7544–7554.CrossRef Murphy, C.J., A.M. Gole, S. Hunyadi Murph, and C.J. Orendorff. 2006. One-Dimensional Colloidal Gold and Silver Nanostructures. Inorganic Chemistry 45 (19): 7544–7554.CrossRef
5.
go back to reference Murphy, C.J., A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany, B.E. Kinard, and P. Hankins. 2008. Chemical Sensing and Imaging with Metallic Nanorods. Chemical Communications 4 (554–557): 554. Murphy, C.J., A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany, B.E. Kinard, and P. Hankins. 2008. Chemical Sensing and Imaging with Metallic Nanorods. Chemical Communications 4 (554–557): 554.
6.
go back to reference Hunyadi, S.E. 2007. Nanoengineered Materials: Synthesis, Design Functionalization and Chemical Sensing Applications. Columbia: University of South Carolina. Hunyadi, S.E. 2007. Nanoengineered Materials: Synthesis, Design Functionalization and Chemical Sensing Applications. Columbia: University of South Carolina.
7.
go back to reference Ruan, C.M., W. Wang, and A.H. Gu. 2006. Surface-Enhanced Raman Scattering for Perchlorate Detection Using Cystamine-Modified Gold Nanoparticles. Analytica Chimica Acta 567: 114–120.CrossRef Ruan, C.M., W. Wang, and A.H. Gu. 2006. Surface-Enhanced Raman Scattering for Perchlorate Detection Using Cystamine-Modified Gold Nanoparticles. Analytica Chimica Acta 567: 114–120.CrossRef
8.
go back to reference Vo-Dinh, T., F. Yan., and M.B Wabuyele. 2006. Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging. In Surface-Enhanced Raman Scattering: Physics and Applications, ed, K. Kneipp, M. Moskovits and H. Kneipp, pp. 409–26. Berlin: Springer. Vo-Dinh, T., F. Yan., and M.B Wabuyele. 2006. Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging. In Surface-Enhanced Raman Scattering: Physics and Applications, ed, K. Kneipp, M. Moskovits and H. Kneipp, pp. 409–26. Berlin: Springer.
9.
go back to reference Cîntǎ Pînzaru, S., I. Pavel, N. Leopold, and W. Kiefer. 2004. Identification and Characterization of Pharmaceuticals Using Raman and Surface-Enhanced Raman Scattering. Journal of Raman Spectroscopy 35 (5): 338–346.CrossRef Cîntǎ Pînzaru, S., I. Pavel, N. Leopold, and W. Kiefer. 2004. Identification and Characterization of Pharmaceuticals Using Raman and Surface-Enhanced Raman Scattering. Journal of Raman Spectroscopy 35 (5): 338–346.CrossRef
10.
go back to reference Kneipp, K., Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld. 1997. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters 78 (9): 1667–1670.CrossRef Kneipp, K., Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld. 1997. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters 78 (9): 1667–1670.CrossRef
11.
go back to reference Song, C., J. Abbell, Y. He, S.E. Hunyadi Murph, Y. Cui, and Y. Zhao. 2012. Gold-Modified Silver Nanorod Arrays: Growth Dynamics and Improved SERS Properties. Journal of Materials Chemistry 22: 1150–1159.CrossRef Song, C., J. Abbell, Y. He, S.E. Hunyadi Murph, Y. Cui, and Y. Zhao. 2012. Gold-Modified Silver Nanorod Arrays: Growth Dynamics and Improved SERS Properties. Journal of Materials Chemistry 22: 1150–1159.CrossRef
12.
go back to reference Hunyadi Murph, S.E., K. Heroux., C. Turick, and D. Thomas. 2012. Metallic and Hybrid Nanostructures: Fundamentals and Applications. In Applications of Nanomaterials (Vol. 4), ed, J.N. Govil. USA: Studium Press LLC. Hunyadi Murph, S.E., K. Heroux., C. Turick, and D. Thomas. 2012. Metallic and Hybrid Nanostructures: Fundamentals and Applications. In Applications of Nanomaterials (Vol. 4), ed, J.N. Govil. USA: Studium Press LLC.
13.
go back to reference Valden, M., X. Lai, and D.W. Goodman. 1998. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 281 (5383): 1647–1650.CrossRef Valden, M., X. Lai, and D.W. Goodman. 1998. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 281 (5383): 1647–1650.CrossRef
14.
go back to reference Hunyadi Murph, S.E., and C.J. Murphy. 2006. Tunable One-Dimensional Silver-Silica Nanopeapod Architectures. The Journal of Physical Chemistry B 110: 7226–7231.CrossRef Hunyadi Murph, S.E., and C.J. Murphy. 2006. Tunable One-Dimensional Silver-Silica Nanopeapod Architectures. The Journal of Physical Chemistry B 110: 7226–7231.CrossRef
15.
go back to reference Zou, S., and G.C. Schatz. 2005. Silver Nanoparticle Array Structures that Produce Giant Enhancements in Electromagnetic Fields. Chemical Physics Letters 403 (1–3): 62–67.CrossRef Zou, S., and G.C. Schatz. 2005. Silver Nanoparticle Array Structures that Produce Giant Enhancements in Electromagnetic Fields. Chemical Physics Letters 403 (1–3): 62–67.CrossRef
16.
go back to reference Orendorff, C.J., A. Gole, T.K. Sau, and C.J. Murphy. 2005. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry 77 (10): 3261–3266.CrossRef Orendorff, C.J., A. Gole, T.K. Sau, and C.J. Murphy. 2005. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry 77 (10): 3261–3266.CrossRef
17.
go back to reference Hunyadi Murph, S.E., and C.J. Murphy. 2013. Patchy Silica-Coated Silver Nanowires as SERS Substrates. Journal of Nanoparticle Research 15 (6): 1607. Hunyadi Murph, S.E., and C.J. Murphy. 2013. Patchy Silica-Coated Silver Nanowires as SERS Substrates. Journal of Nanoparticle Research 15 (6): 1607.
18.
go back to reference Orendorff, C.J., L. Gearheart, N.R. Jana, and C.J. Murphy. 2006. Aspect Ratio Dependence on Surface Enhanced Raman Scattering Using Silver and Gold Nanorod Substrates. Physical Chemistry Chemical Physics 8 (1): 165–170.CrossRef Orendorff, C.J., L. Gearheart, N.R. Jana, and C.J. Murphy. 2006. Aspect Ratio Dependence on Surface Enhanced Raman Scattering Using Silver and Gold Nanorod Substrates. Physical Chemistry Chemical Physics 8 (1): 165–170.CrossRef
19.
go back to reference Hunyadi, S.E., and C.J. Murphy. 2006. Bimetallic Silver-Gold Nanowires: Fabrication and Use in Surface- Enhanced Raman Scattering. Journal of Materials Chemistry. 16 (Special Issue: Anisotropic Nanoparticles): 3929–35. Hunyadi, S.E., and C.J. Murphy. 2006. Bimetallic Silver-Gold Nanowires: Fabrication and Use in Surface- Enhanced Raman Scattering. Journal of Materials Chemistry. 16 (Special Issue: Anisotropic Nanoparticles): 3929–35.
20.
go back to reference Alvarez-Puebla, R.A., E. Arceo, P.J.G. Goulet, J.J. Garrido, and R.F. Aroca. 2005. Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry B 109 (9): 3787–3792.CrossRef Alvarez-Puebla, R.A., E. Arceo, P.J.G. Goulet, J.J. Garrido, and R.F. Aroca. 2005. Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry B 109 (9): 3787–3792.CrossRef
21.
go back to reference Nie, S., and S.R. Emory. 1997. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275 (5303): 1102–1106.CrossRef Nie, S., and S.R. Emory. 1997. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275 (5303): 1102–1106.CrossRef
22.
go back to reference Lascola, R., S. McWhorter, and S.H. Murph. 2010. Advanced Gas Sensors Using SERS-Activated Waveguides. AIP Conference Proceedings 1267 (1): 1095–1096.CrossRef Lascola, R., S. McWhorter, and S.H. Murph. 2010. Advanced Gas Sensors Using SERS-Activated Waveguides. AIP Conference Proceedings 1267 (1): 1095–1096.CrossRef
23.
go back to reference Lascola, R.J., C.S. McWhorter, and S.H. Murph. 2015. Surface Enhanced Raman Scattering Spectroscopic Waveguide.U.S. Patent 4/15/2015, serial # 501665408S. Lascola, R.J., C.S. McWhorter, and S.H. Murph. 2015. Surface Enhanced Raman Scattering Spectroscopic Waveguide.U.S. Patent 4/15/2015, serial # 501665408S.
24.
go back to reference Murphy, C.J., and S.E. Hunyadi. 2006. Europium-Doped Silica Nanotubes: Synthesis and Optical Properties. Materials Research Society Symposium Proceedings 922E: U01–U03. Murphy, C.J., and S.E. Hunyadi. 2006. Europium-Doped Silica Nanotubes: Synthesis and Optical Properties. Materials Research Society Symposium Proceedings 922E: U01–U03.
25.
go back to reference Malicka, J., I. Gryczynski, and J.R. Lakowicz. 2003. Enhanced Emission of Highly Labeled DNA Oligomers near Silver Metallic Surfaces. Analytical Chemistry 75 (17): 4408–4414.CrossRef Malicka, J., I. Gryczynski, and J.R. Lakowicz. 2003. Enhanced Emission of Highly Labeled DNA Oligomers near Silver Metallic Surfaces. Analytical Chemistry 75 (17): 4408–4414.CrossRef
26.
go back to reference Sokolov, K., G. Chumanov, and T.M. Cotton. 1998. Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films. Analytical Chemistry 70 (18): 3898–3905.CrossRef Sokolov, K., G. Chumanov, and T.M. Cotton. 1998. Enhancement of Molecular Fluorescence near the Surface of Colloidal Metal Films. Analytical Chemistry 70 (18): 3898–3905.CrossRef
27.
go back to reference Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes. 2007. Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs. Journal of Fluorescence 17 (2): 127–131.CrossRef Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes. 2007. Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs. Journal of Fluorescence 17 (2): 127–131.CrossRef
28.
go back to reference Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes. 2007. Fluorescent Core—Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. Journal of the American Chemical Society 129 (6): 1524–1525.CrossRef Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes. 2007. Fluorescent Core—Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. Journal of the American Chemical Society 129 (6): 1524–1525.CrossRef
29.
go back to reference Hunyadi Murph, S.E., S. Jacobs., M. Siegfried., T. Hu., S. Serkiz., and J. Hudson. 2012. Manganese- Doped Gold Nanoparticles as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Journal of Nanoparticle Research 14: 658–659. Hunyadi Murph, S.E., S. Jacobs., M. Siegfried., T. Hu., S. Serkiz., and J. Hudson. 2012. Manganese- Doped Gold Nanoparticles as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Journal of Nanoparticle Research 14: 658–659.
30.
go back to reference Obare, S.O., R.E. Hollowell, and C.J. Murphy. 2002. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles. Langmuir 18 (26): 10407–10410.CrossRef Obare, S.O., R.E. Hollowell, and C.J. Murphy. 2002. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles. Langmuir 18 (26): 10407–10410.CrossRef
31.
go back to reference Mirkin, C.A., R.L. Letsinger, R.C. Mucic, and J.J. Storhoff. 1996. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382: 607–609.CrossRef Mirkin, C.A., R.L. Letsinger, R.C. Mucic, and J.J. Storhoff. 1996. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382: 607–609.CrossRef
32.
go back to reference Chang, J.-Y., H. Wu, H. Chen, Y.-C. Ling, and W. Tan. 2005. Oriented Assembly of Au Nanorods Using Biorecognition System. Chemical Communications 8: 1092–1094.CrossRef Chang, J.-Y., H. Wu, H. Chen, Y.-C. Ling, and W. Tan. 2005. Oriented Assembly of Au Nanorods Using Biorecognition System. Chemical Communications 8: 1092–1094.CrossRef
33.
go back to reference Sudeep, P.K., S.T.S. Joseph, and K.G. Thomas. 2005. Selective Detection of Cysteine and Glutathione Using Gold Nanorods. Journal of the American Chemical Society 127 (18): 6516–6517.CrossRef Sudeep, P.K., S.T.S. Joseph, and K.G. Thomas. 2005. Selective Detection of Cysteine and Glutathione Using Gold Nanorods. Journal of the American Chemical Society 127 (18): 6516–6517.CrossRef
34.
go back to reference Orendorff, C.J., P.L. Hankins, and C.J. Murphy. 2005. pH-Triggered Assembly of Gold Nanorods. Langmuir 21 (5): 2022–2026.CrossRef Orendorff, C.J., P.L. Hankins, and C.J. Murphy. 2005. pH-Triggered Assembly of Gold Nanorods. Langmuir 21 (5): 2022–2026.CrossRef
35.
go back to reference Bhadra, D., S. Bhadra, S. Jain, and N.K. Jain. 2003. A PEGylated Dendritic Nanoparticulate Carrier of Fluorouracil. International Journal of Pharmaceutics 257 (1–2): 111–124.CrossRef Bhadra, D., S. Bhadra, S. Jain, and N.K. Jain. 2003. A PEGylated Dendritic Nanoparticulate Carrier of Fluorouracil. International Journal of Pharmaceutics 257 (1–2): 111–124.CrossRef
36.
go back to reference Haes, A.J., and R.P. Van Duyne. 2002. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. Journal of the American Chemical Society 124 (35): 10596–10604.CrossRef Haes, A.J., and R.P. Van Duyne. 2002. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. Journal of the American Chemical Society 124 (35): 10596–10604.CrossRef
37.
go back to reference McFarland, A.D., and R.P. Van Duyne. 2003. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters 3 (8): 1057–1062.CrossRef McFarland, A.D., and R.P. Van Duyne. 2003. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters 3 (8): 1057–1062.CrossRef
38.
go back to reference Huang, X., I.H. El-Sayed, W. Qian, and M.A. El-Sayed. 2006. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society 128 (6): 2115–2120.CrossRef Huang, X., I.H. El-Sayed, W. Qian, and M.A. El-Sayed. 2006. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society 128 (6): 2115–2120.CrossRef
39.
go back to reference El-Sayed, I.H., X. Huang, and M.A. El-Sayed. 2005. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Letters 5 (5): 829–834.CrossRef El-Sayed, I.H., X. Huang, and M.A. El-Sayed. 2005. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Letters 5 (5): 829–834.CrossRef
40.
go back to reference El-Sayed, I.H., X. Huang, and M.A. El-Sayed. 2006. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Letters 239 (1): 129–135.CrossRef El-Sayed, I.H., X. Huang, and M.A. El-Sayed. 2006. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Letters 239 (1): 129–135.CrossRef
41.
go back to reference Pissuwan, D., S.M. Valenzuela, and M.B. Cortie. 2006. Therapeutic Possibilities of Plasmonically Heated Gold Nanoparticles. Trends in Biotechnology 24 (2): 62–67.CrossRef Pissuwan, D., S.M. Valenzuela, and M.B. Cortie. 2006. Therapeutic Possibilities of Plasmonically Heated Gold Nanoparticles. Trends in Biotechnology 24 (2): 62–67.CrossRef
42.
go back to reference Hirsch, L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West. 2003. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance. Proceedings of the National Academy of Sciences of the United States of America 100: 13549–13554.CrossRef Hirsch, L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West. 2003. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance. Proceedings of the National Academy of Sciences of the United States of America 100: 13549–13554.CrossRef
43.
go back to reference Abadeer, N.S., and C.J. Murphy. 2016. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. The Journal of Physical Chemistry C 120 (9): 4691–4716.CrossRef Abadeer, N.S., and C.J. Murphy. 2016. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. The Journal of Physical Chemistry C 120 (9): 4691–4716.CrossRef
44.
go back to reference Day, E.S., J.G. Morton., and J.L. West. 2009. Nanoparticles for Thermal Cancer Therapy. Journal of Biomechanical Engineering 131 (7): 074001-074001-5. Day, E.S., J.G. Morton., and J.L. West. 2009. Nanoparticles for Thermal Cancer Therapy. Journal of Biomechanical Engineering 131 (7): 074001-074001-5.
45.
go back to reference Xiao, Z., Q. Wu, S. Luo, C. Zhang, J. Baur, R. Justice, and T. Liu. 2013. Shape Matters: A Gold Nanoparticle Enabled Shape Memory Polymer Triggered by Laser Irradiation. Particle & Particle Systems Characterization 30 (4): 338–345.CrossRef Xiao, Z., Q. Wu, S. Luo, C. Zhang, J. Baur, R. Justice, and T. Liu. 2013. Shape Matters: A Gold Nanoparticle Enabled Shape Memory Polymer Triggered by Laser Irradiation. Particle & Particle Systems Characterization 30 (4): 338–345.CrossRef
46.
go back to reference Black, K.C.L., Y. Wang, H.P. Luehmann, X. Cai, W. Xing, B. Pang, Y. Zhao, C.S. Cutler, L.V. Wang, Y. Liu, and Y. Xia. 2014. Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution. ACS Nano 8 (5): 4385–4394.CrossRef Black, K.C.L., Y. Wang, H.P. Luehmann, X. Cai, W. Xing, B. Pang, Y. Zhao, C.S. Cutler, L.V. Wang, Y. Liu, and Y. Xia. 2014. Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution. ACS Nano 8 (5): 4385–4394.CrossRef
47.
go back to reference Unrine, J.M., O.V. Tsyusko, S.E. Hunyadi, J. Judy, and P.M. Bertsch. 2010. Effects of Particle Size on Chemical Speciation and Bioavalability of Copper to Earthworms. Journal of Environmental Quality 39: 1942–1953.CrossRef Unrine, J.M., O.V. Tsyusko, S.E. Hunyadi, J. Judy, and P.M. Bertsch. 2010. Effects of Particle Size on Chemical Speciation and Bioavalability of Copper to Earthworms. Journal of Environmental Quality 39: 1942–1953.CrossRef
48.
go back to reference Unrine, J.M., S.E. Hunyadi, O.V. Tsyusko, W. Rao, W.A. Shoults-Wilson, and P.M. Bertsch. 2010. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida). Environmental Science and Technology 44 (21): 8308–8313.CrossRef Unrine, J.M., S.E. Hunyadi, O.V. Tsyusko, W. Rao, W.A. Shoults-Wilson, and P.M. Bertsch. 2010. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida). Environmental Science and Technology 44 (21): 8308–8313.CrossRef
49.
go back to reference Unrine, J., P. Bertsch., and S. Hunyadi. 2008. Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. In Nanoscience and Nanotechnology (pp. 345–66). New Jersey: Wiley. Unrine, J., P. Bertsch., and S. Hunyadi. 2008. Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. In Nanoscience and Nanotechnology (pp. 345–66). New Jersey: Wiley.
50.
go back to reference Hillyer, J.F., and R.M. Albrecht. 2001. Gastrointestinal Persorption and Tissue Distribution of Differently Sized Colloidal Gold Nanoparticles. Journal of Pharmaceutical Sciences 90 (12): 1927–1936.CrossRef Hillyer, J.F., and R.M. Albrecht. 2001. Gastrointestinal Persorption and Tissue Distribution of Differently Sized Colloidal Gold Nanoparticles. Journal of Pharmaceutical Sciences 90 (12): 1927–1936.CrossRef
51.
go back to reference Tak, Y.K., S. Pal, P.K. Naoghare, S. Rangasamy, and J.M. Song. 2015. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter? Scientific Reports 5: 16908.CrossRef Tak, Y.K., S. Pal, P.K. Naoghare, S. Rangasamy, and J.M. Song. 2015. Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter? Scientific Reports 5: 16908.CrossRef
52.
go back to reference Zhang, R., K. Cheng, A.L. Antaris, X. Ma, M. Yang, S. Ramakrishnan, G. Liu, A. Lu, H. Dai, M. Tian, and Z. Cheng. 2016. Hybrid Anisotropic Nanostructures for Dual-Modal Cancer Imaging and Image-Guided Chemo-Thermo Therapies. Biomaterials 103: 265–277.CrossRef Zhang, R., K. Cheng, A.L. Antaris, X. Ma, M. Yang, S. Ramakrishnan, G. Liu, A. Lu, H. Dai, M. Tian, and Z. Cheng. 2016. Hybrid Anisotropic Nanostructures for Dual-Modal Cancer Imaging and Image-Guided Chemo-Thermo Therapies. Biomaterials 103: 265–277.CrossRef
53.
go back to reference Jacobs, S., S. Murph, M. Siegfried, S. Serkiz, and T.C.C. Hu. 2009. Manganese-Gold Nanospheres as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Proceedings of the International Society for Magnetic Resonance in Medicine 17: 1275. Jacobs, S., S. Murph, M. Siegfried, S. Serkiz, and T.C.C. Hu. 2009. Manganese-Gold Nanospheres as Positive Contrast Agents for Magnetic Resonance Imaging (MRI). Proceedings of the International Society for Magnetic Resonance in Medicine 17: 1275.
54.
go back to reference Hunyadi Murph, S.E., M. Siegfried., S. Jacobs., T. Hu., and S. Serkiz. 2009. Manganese-Doped Gold Nanoparticle as Positive Contrast Agents for MRI. Proceedings of Front Characterization and Control of Magnetic Carriers. Hunyadi Murph, S.E., M. Siegfried., S. Jacobs., T. Hu., and S. Serkiz. 2009. Manganese-Doped Gold Nanoparticle as Positive Contrast Agents for MRI. Proceedings of Front Characterization and Control of Magnetic Carriers.
55.
go back to reference Nagel, E., N. Al-Saadi, and E. Fleck. 2000. Cardiovascular Magnetic Resonance: Myocardial Perfusion. Herz 25 (4): 409–416.CrossRef Nagel, E., N. Al-Saadi, and E. Fleck. 2000. Cardiovascular Magnetic Resonance: Myocardial Perfusion. Herz 25 (4): 409–416.CrossRef
56.
go back to reference Geng, Y., P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, and D.E. Discher. 2007. Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery. Nature Nanotechnology 2 (4): 249–255.CrossRef Geng, Y., P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, and D.E. Discher. 2007. Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery. Nature Nanotechnology 2 (4): 249–255.CrossRef
57.
go back to reference Gratton, S.E.A., P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, and J.M. DeSimone. 2008. The Effect of Particle Design on Cellular Internalization Pathways. Proceedings of the National Academy of Sciences 105 (33): 11613–11618.CrossRef Gratton, S.E.A., P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, and J.M. DeSimone. 2008. The Effect of Particle Design on Cellular Internalization Pathways. Proceedings of the National Academy of Sciences 105 (33): 11613–11618.CrossRef
58.
go back to reference Toy, R., P.M. Peiris, K.B. Ghaghada, and E. Karathanasis. 2013. Shaping Cancer Nanomedicine: The Effect of Particle Shape on the In Vivo Journey of Nanoparticles. Nanomedicine 9 (1): 121–134.CrossRef Toy, R., P.M. Peiris, K.B. Ghaghada, and E. Karathanasis. 2013. Shaping Cancer Nanomedicine: The Effect of Particle Shape on the In Vivo Journey of Nanoparticles. Nanomedicine 9 (1): 121–134.CrossRef
59.
go back to reference Karaman, D.S., D. Desai, R. Senthilkumar, E.M. Johansson, N. Råtts, M. Odén, J.E. Eriksson, C. Sahlgren, D.M. Toivola, and J.M. Rosenholm. 2012. Shape Engineering vs Organic Modification of Inorganic Nanoparticles as a Tool for Enhancing Cellular Internalization. Nanoscale Research Letters 7 (1): 358.CrossRef Karaman, D.S., D. Desai, R. Senthilkumar, E.M. Johansson, N. Råtts, M. Odén, J.E. Eriksson, C. Sahlgren, D.M. Toivola, and J.M. Rosenholm. 2012. Shape Engineering vs Organic Modification of Inorganic Nanoparticles as a Tool for Enhancing Cellular Internalization. Nanoscale Research Letters 7 (1): 358.CrossRef
60.
go back to reference Decuzzi, P., B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, and M. Ferrari. 2010. Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles. Journal of Controlled Release 141 (3): 320–327.CrossRef Decuzzi, P., B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, and M. Ferrari. 2010. Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles. Journal of Controlled Release 141 (3): 320–327.CrossRef
61.
go back to reference Shah, S., Y. Liu, W. Hu, and J. Gao. 2011. Modeling Particle Shape-Dependent Dynamics in Nanomedicine. Journal of Nanoscience and Nanotechnology 11: 919–928.CrossRef Shah, S., Y. Liu, W. Hu, and J. Gao. 2011. Modeling Particle Shape-Dependent Dynamics in Nanomedicine. Journal of Nanoscience and Nanotechnology 11: 919–928.CrossRef
62.
go back to reference Agarwal, R., V. Singh, P. Jurney, L. Shi, S.V. Sreenivasan, and K. Roy. 2013. Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs Over Nanorods and Use Shape-Specific Uptake Mechanisms. Proceedings of the National Academy of Sciences 110 (43): 17247–17252.CrossRef Agarwal, R., V. Singh, P. Jurney, L. Shi, S.V. Sreenivasan, and K. Roy. 2013. Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs Over Nanorods and Use Shape-Specific Uptake Mechanisms. Proceedings of the National Academy of Sciences 110 (43): 17247–17252.CrossRef
63.
go back to reference Smith, B.R., P. Kempen, D. Bouley, A. Xu, Z. Liu, N. Melosh, H. Dai, R. Sinclair, and S.S. Gambhir. 2012. Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation. Nano Letters 12 (7): 3369–3377.CrossRef Smith, B.R., P. Kempen, D. Bouley, A. Xu, Z. Liu, N. Melosh, H. Dai, R. Sinclair, and S.S. Gambhir. 2012. Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation. Nano Letters 12 (7): 3369–3377.CrossRef
64.
go back to reference Jiang, X., W. Qu., D. Pan., Y. Ren., J.-M. Williford., H. Cui., E. Luijten., and H.-Q. Mao. 2013. Plasmid-Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles. Advanced Materials 25 (2): 227–32. Jiang, X., W. Qu., D. Pan., Y. Ren., J.-M. Williford., H. Cui., E. Luijten., and H.-Q. Mao. 2013. Plasmid-Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles. Advanced Materials 25 (2): 227–32.
65.
go back to reference Dasgupta, S., T. Auth, and G. Gompper. 2014. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters 14 (2): 687–693.CrossRef Dasgupta, S., T. Auth, and G. Gompper. 2014. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters 14 (2): 687–693.CrossRef
66.
go back to reference Liu, Y., J. Tan, A. Thomas, D. Ou-Yang, and V.R. Muzykantov. 2012. The Shape of Things to Come: Importance of Design in Nanotechnology for Drug Delivery. Therapeutic Delivery 3 (2): 181–194.CrossRef Liu, Y., J. Tan, A. Thomas, D. Ou-Yang, and V.R. Muzykantov. 2012. The Shape of Things to Come: Importance of Design in Nanotechnology for Drug Delivery. Therapeutic Delivery 3 (2): 181–194.CrossRef
67.
go back to reference Hunyadi Murph, S.E., S. Serkiz., E. Fox., H. Colon-Mercado., L. Sexton., and M. Siegfried. 2011. Synthesis, Functionalization, Characterization and Application of Controlled Shape Nanoparticles in Energy Production. In Fluorine-Related Nanoscience with Energy Applications, ed, D.J. Nelson, and C.N. Brammer (Vol. 1064). Hunyadi Murph, S.E., S. Serkiz., E. Fox., H. Colon-Mercado., L. Sexton., and M. Siegfried. 2011. Synthesis, Functionalization, Characterization and Application of Controlled Shape Nanoparticles in Energy Production. In Fluorine-Related Nanoscience with Energy Applications, ed, D.J. Nelson, and C.N. Brammer (Vol. 1064).
68.
go back to reference Murph, S. 2012. Nanotechnology and Fuel Cells. Innovation: America’s Journal of Technology Commercialization. Murph, S. 2012. Nanotechnology and Fuel Cells. Innovation: America’s Journal of Technology Commercialization.
69.
go back to reference Narayanan, R., and M.A. El-Sayed. 2003. Effect of Catalytic Activity on the Metallic Nanoparticle Size Distribution: Electron-Transfer Reaction between Fe(CN)6 and Thiosulfate Ions Catalyzed by PVP—Platinum Nanoparticles. The Journal of Physical Chemistry B 107 (45): 12416–12424.CrossRef Narayanan, R., and M.A. El-Sayed. 2003. Effect of Catalytic Activity on the Metallic Nanoparticle Size Distribution: Electron-Transfer Reaction between Fe(CN)6 and Thiosulfate Ions Catalyzed by PVP—Platinum Nanoparticles. The Journal of Physical Chemistry B 107 (45): 12416–12424.CrossRef
70.
go back to reference Hunyadi, S.E., and C.J. Murphy. 2009. Synthesis and Characterization of Silver-Platinum Bimetallic Nanowires and Platinum Nanotubes. Journal of Cluster Science 20: 319–330.CrossRef Hunyadi, S.E., and C.J. Murphy. 2009. Synthesis and Characterization of Silver-Platinum Bimetallic Nanowires and Platinum Nanotubes. Journal of Cluster Science 20: 319–330.CrossRef
71.
go back to reference Baker, L.A., P. Jin, and C.R. Martin. 2005. Biomaterials and Biotechnologies Based on Nanotube Membranes. Critical Reviews in Solid State and Materials Sciences 30 (4): 183–205.CrossRef Baker, L.A., P. Jin, and C.R. Martin. 2005. Biomaterials and Biotechnologies Based on Nanotube Membranes. Critical Reviews in Solid State and Materials Sciences 30 (4): 183–205.CrossRef
72.
go back to reference Liu, Z., B. Zhao, C. Guo, Y. Sun, F. Xu, H. Yang, and Z. Li. 2009. Novel Hybrid Electrocatalyst with Enhanced Performance in Alkaline Media: Hollow Au/Pd Core/Shell Nanostructures with a Raspberry Surface. The Journal of Physical Chemistry C 113 (38): 16766–16771.CrossRef Liu, Z., B. Zhao, C. Guo, Y. Sun, F. Xu, H. Yang, and Z. Li. 2009. Novel Hybrid Electrocatalyst with Enhanced Performance in Alkaline Media: Hollow Au/Pd Core/Shell Nanostructures with a Raspberry Surface. The Journal of Physical Chemistry C 113 (38): 16766–16771.CrossRef
73.
go back to reference Crooks, R.M., M. Zhao, L. Sun, V. Chechik, and L.K. Yeung. 2001. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Accounts of Chemical Research 34 (3): 181–190.CrossRef Crooks, R.M., M. Zhao, L. Sun, V. Chechik, and L.K. Yeung. 2001. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Accounts of Chemical Research 34 (3): 181–190.CrossRef
74.
go back to reference El-Sayed, M.A. 2001. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research 34 (4): 257–264.CrossRef El-Sayed, M.A. 2001. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research 34 (4): 257–264.CrossRef
75.
go back to reference Reddington, E., A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, and T.E. Mallouk. 1998. Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts. Science 280 (5370): 1735–1737.CrossRef Reddington, E., A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, and T.E. Mallouk. 1998. Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts. Science 280 (5370): 1735–1737.CrossRef
76.
go back to reference Roucoux, A., J. Schulz, and H. Patin. 2002. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chemical Reviews 102 (10): 3757–3778.CrossRef Roucoux, A., J. Schulz, and H. Patin. 2002. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chemical Reviews 102 (10): 3757–3778.CrossRef
77.
go back to reference Steele, B.C.H., and A. Heinzel. 2001. Materials for Fuel-Cell Technologies. Nature 414 (6861): 345–352.CrossRef Steele, B.C.H., and A. Heinzel. 2001. Materials for Fuel-Cell Technologies. Nature 414 (6861): 345–352.CrossRef
78.
go back to reference Liang, H.P., H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, and C.L. Bai. 2004. Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie International Edition 43 (12): 1540–1543.CrossRef Liang, H.P., H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, and C.L. Bai. 2004. Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie International Edition 43 (12): 1540–1543.CrossRef
79.
go back to reference Bell, A.T. 2003. The Impact of Nanoscience on Heterogeneous Catalysis. Science 299 (5613): 1688–1691.CrossRef Bell, A.T. 2003. The Impact of Nanoscience on Heterogeneous Catalysis. Science 299 (5613): 1688–1691.CrossRef
80.
go back to reference Burda, C., X. Chen, R. Narayanan, and M.A. El-Sayed. 2005. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 105 (4): 1025–1102.CrossRef Burda, C., X. Chen, R. Narayanan, and M.A. El-Sayed. 2005. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 105 (4): 1025–1102.CrossRef
81.
go back to reference Mahmoud, M.A., R. Narayanan, and M.A. El-Sayed. 2013. Enhancing Colloidal Metallic Nanocatalysis: Sharp Edges and Corners for Solid Nanoparticles and Cage Effect for Hollow Ones. Accounts of Chemical Research 46 (8): 1795–1805.CrossRef Mahmoud, M.A., R. Narayanan, and M.A. El-Sayed. 2013. Enhancing Colloidal Metallic Nanocatalysis: Sharp Edges and Corners for Solid Nanoparticles and Cage Effect for Hollow Ones. Accounts of Chemical Research 46 (8): 1795–1805.CrossRef
82.
go back to reference Williams, K.R., and G.T. Burstein. 1997. Low Temperature Fuel Cells: Interactions Between Catalysts and Engineering Design. Catalysis Today 38 (4): 401–410.CrossRef Williams, K.R., and G.T. Burstein. 1997. Low Temperature Fuel Cells: Interactions Between Catalysts and Engineering Design. Catalysis Today 38 (4): 401–410.CrossRef
84.
go back to reference Hunyadi Murph, S.E. 2011. One-Dimensional Plasmonic Nano-Photocatalysts: Synthesis, Characterization and Photocatalytic Activity. In Proceedings of SPIE, ed, Y. Tachibana, pp 1–11. Hunyadi Murph, S.E. 2011. One-Dimensional Plasmonic Nano-Photocatalysts: Synthesis, Characterization and Photocatalytic Activity. In Proceedings of SPIE, ed, Y. Tachibana, pp 1–11.
85.
go back to reference Narayanan, R., and M.A. El-Sayed. 2005. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B 109 (26): 12663–12676.CrossRef Narayanan, R., and M.A. El-Sayed. 2005. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B 109 (26): 12663–12676.CrossRef
86.
go back to reference Wu, B., and N. Zheng. 2013. Surface and Interface Control of Noble Metal Nanocrystals for Catalytic and Electrocatalytic Applications. Nano Today 8 (2): 168–197.CrossRef Wu, B., and N. Zheng. 2013. Surface and Interface Control of Noble Metal Nanocrystals for Catalytic and Electrocatalytic Applications. Nano Today 8 (2): 168–197.CrossRef
87.
go back to reference Semagina, N., and L. Kiwi-Minsker. 2009. Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catalysis Reviews 51 (2): 147–217.CrossRef Semagina, N., and L. Kiwi-Minsker. 2009. Recent Advances in the Liquid-Phase Synthesis of Metal Nanostructures with Controlled Shape and Size for Catalysis. Catalysis Reviews 51 (2): 147–217.CrossRef
88.
go back to reference Hunyadi Murph, S.E., C.J. Murphy., H. Colon-Mercado., R. Torres., K. Heroux., E. Fox., L. Thompson., and R. Haasch. 2011. Tuning of Size and Shape of Au-Pt Nanocatalyst for Direct Methanol Fuel Cells. Journal of Nanoparticle Research 13: 6347–6364. Hunyadi Murph, S.E., C.J. Murphy., H. Colon-Mercado., R. Torres., K. Heroux., E. Fox., L. Thompson., and R. Haasch. 2011. Tuning of Size and Shape of Au-Pt Nanocatalyst for Direct Methanol Fuel Cells. Journal of Nanoparticle Research 13: 6347–6364.
89.
go back to reference Chuan-Jian, Z., L. Jin, F. Bin, N.W. Bridgid, N.N. Peter, L. Rameshwori, and Y. Jun. 2010. Nanostructured Catalysts in Fuel Cells. Nanotechnology 21 (6): 062001.CrossRef Chuan-Jian, Z., L. Jin, F. Bin, N.W. Bridgid, N.N. Peter, L. Rameshwori, and Y. Jun. 2010. Nanostructured Catalysts in Fuel Cells. Nanotechnology 21 (6): 062001.CrossRef
90.
go back to reference Larsen, G.K., W. Farr, and S.E.H. Murph. 2016. Multifunctional Fe2O3-Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. Journal of Physical Chemistry C 120 (28): 15162–15172.CrossRef Larsen, G.K., W. Farr, and S.E.H. Murph. 2016. Multifunctional Fe2O3-Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. Journal of Physical Chemistry C 120 (28): 15162–15172.CrossRef
91.
go back to reference Murph, S.E.H., G.K. Larsen., and R.J. Lascola. 2016. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating. Journal of Visualized Experiments (108): e53598. Murph, S.E.H., G.K. Larsen., and R.J. Lascola. 2016. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating. Journal of Visualized Experiments (108): e53598.
92.
go back to reference Murph, S.E.H., G.K. Larsen, P. Korinko, K.J. Coopersmith, A.J. Summer, and R. Lewis. 2017. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration. JOM Journal of the Minerals Metals and Materials Society 69 (2): 162–172.CrossRef Murph, S.E.H., G.K. Larsen, P. Korinko, K.J. Coopersmith, A.J. Summer, and R. Lewis. 2017. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration. JOM Journal of the Minerals Metals and Materials Society 69 (2): 162–172.CrossRef
93.
go back to reference Kar, M., M. Pauline, K. Sharma, G. Kumaraswamy, and S. Sen Gupta. 2011. Synthesis of Poly-l-glutamic Acid Grafted Silica Nanoparticles and Their Assembly into Macroporous Structures. Langmuir 27 (19): 12124–12133.CrossRef Kar, M., M. Pauline, K. Sharma, G. Kumaraswamy, and S. Sen Gupta. 2011. Synthesis of Poly-l-glutamic Acid Grafted Silica Nanoparticles and Their Assembly into Macroporous Structures. Langmuir 27 (19): 12124–12133.CrossRef
94.
go back to reference Li, X.q., and W.x. Zhang. 2006. Iron Nanoparticles:  The Core—Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir 22 (10): 4638–42. Li, X.q., and W.x. Zhang. 2006. Iron Nanoparticles:  The Core—Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir 22 (10): 4638–42.
95.
go back to reference Wang, H., Y.F. Yu, Q.W. Chen, and K. Cheng. 2011. Carboxyl-Functionalized Nanoparticles with Magnetic Core and Mesopore Carbon Shell as Adsorbents for the Removal of Heavy Metal Ions From Aqueous Solution. Dalton Transactions 40 (3): 559–563.CrossRef Wang, H., Y.F. Yu, Q.W. Chen, and K. Cheng. 2011. Carboxyl-Functionalized Nanoparticles with Magnetic Core and Mesopore Carbon Shell as Adsorbents for the Removal of Heavy Metal Ions From Aqueous Solution. Dalton Transactions 40 (3): 559–563.CrossRef
96.
go back to reference Raschke, G., S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger. 2003. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters 3 (7): 935–938.CrossRef Raschke, G., S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger. 2003. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters 3 (7): 935–938.CrossRef
97.
go back to reference Fondeur, F.F., S.E. Murph., K. Taylor-Pashow., and D.T. Hobbs. 2014. Hybrid Ion Exchange-SERS Sensors for Determining Distribution Coefficients. USA: Savannah River Site. Fondeur, F.F., S.E. Murph., K. Taylor-Pashow., and D.T. Hobbs. 2014. Hybrid Ion Exchange-SERS Sensors for Determining Distribution Coefficients. USA: Savannah River Site.
98.
go back to reference Badr, Y., M.G. Abd El-Wahed, and M.A. Mahmoud. 2008. Photocatalytic Degradation of Methyl Red Dye by Silica Nanoparticles. Journal of Hazardous Materials 154 (1–3): 245–253.CrossRef Badr, Y., M.G. Abd El-Wahed, and M.A. Mahmoud. 2008. Photocatalytic Degradation of Methyl Red Dye by Silica Nanoparticles. Journal of Hazardous Materials 154 (1–3): 245–253.CrossRef
99.
go back to reference Yao, K., P. Basnet, H. Sessions, G.K. Larsen, S.E.H. Murph, and Y. Zhao. 2016. Fe2O3–TiO2 core–shell nanorod Arrays for Visible Light Photocatalytic Applications. Catalysis Today 270: 51–58.CrossRef Yao, K., P. Basnet, H. Sessions, G.K. Larsen, S.E.H. Murph, and Y. Zhao. 2016. Fe2O3–TiO2 core–shell nanorod Arrays for Visible Light Photocatalytic Applications. Catalysis Today 270: 51–58.CrossRef
100.
go back to reference He, Y., P. Basnet, S.E.H. Murph, and Y. Zhao. 2013. Ag Nanoparticle Embedded TiO2 Composite Nanorod Arrays Fabricated by Oblique Angle Deposition: Toward Plasmonic Photocatalysis. ACS Applied Materials & Interfaces 5 (22): 11818–11827.CrossRef He, Y., P. Basnet, S.E.H. Murph, and Y. Zhao. 2013. Ag Nanoparticle Embedded TiO2 Composite Nanorod Arrays Fabricated by Oblique Angle Deposition: Toward Plasmonic Photocatalysis. ACS Applied Materials & Interfaces 5 (22): 11818–11827.CrossRef
101.
go back to reference Smith, W., and Y. Zhao. 2008. Enhanced Photocatalytic Activity by Aligned WO3/TiO2 Two-Layer Nanorod Arrays. The Journal of Physical Chemistry C 112 (49): 19635–19641.CrossRef Smith, W., and Y. Zhao. 2008. Enhanced Photocatalytic Activity by Aligned WO3/TiO2 Two-Layer Nanorod Arrays. The Journal of Physical Chemistry C 112 (49): 19635–19641.CrossRef
102.
go back to reference Smith, W., and Y.P. Zhao. 2009. Superior Photocatalytic Performance by Vertically Aligned Core–Shell TiO2/WO3 Nanorod Arrays. Catalysis Communications 10 (7): 1117–1121.CrossRef Smith, W., and Y.P. Zhao. 2009. Superior Photocatalytic Performance by Vertically Aligned Core–Shell TiO2/WO3 Nanorod Arrays. Catalysis Communications 10 (7): 1117–1121.CrossRef
103.
go back to reference Shand, M., and J.A. Anderson. 2013. Aqueous Phase Photocatalytic Nitrate Destruction Using titania Based Materials: Routes to Enhanced Performance and Prospects for Visible Light Activation. Catalysis Science & Technology 3 (4): 879–899.CrossRef Shand, M., and J.A. Anderson. 2013. Aqueous Phase Photocatalytic Nitrate Destruction Using titania Based Materials: Routes to Enhanced Performance and Prospects for Visible Light Activation. Catalysis Science & Technology 3 (4): 879–899.CrossRef
104.
go back to reference Doudrick, K., T. Yang, K. Hristovski, and P. Westerhoff. 2013. Photocatalytic Nitrate Reduction in Water: Managing the Hole Scavenger and Reaction By-Product Selectivity. Applied Catalysis, B: Environmental 136–137: 40–47.CrossRef Doudrick, K., T. Yang, K. Hristovski, and P. Westerhoff. 2013. Photocatalytic Nitrate Reduction in Water: Managing the Hole Scavenger and Reaction By-Product Selectivity. Applied Catalysis, B: Environmental 136–137: 40–47.CrossRef
105.
go back to reference S.E. Hunyadi Murph., and G.K. Larsen. 2017. Titania Nanoparticles for Environmental Applications. Journals of Materials Chemistry. (Manuscript in preparation). S.E. Hunyadi Murph., and G.K. Larsen. 2017. Titania Nanoparticles for Environmental Applications. Journals of Materials Chemistry. (Manuscript in preparation).
106.
go back to reference Su, J., X. Feng, J.D. Sloppy, L. Guo, and C.A. Grimes. 2011. Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Letters 11 (1): 203–208.CrossRef Su, J., X. Feng, J.D. Sloppy, L. Guo, and C.A. Grimes. 2011. Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Letters 11 (1): 203–208.CrossRef
107.
go back to reference Dupont, P.-H., C. Couteau, D.J. Rogers, F.H. Téhérani, and G. Lérondel. 2010. Waveguiding-assisted random lasing in epitaxial ZnO thin film. Applied Physics Letters 97 (26): 261109.CrossRef Dupont, P.-H., C. Couteau, D.J. Rogers, F.H. Téhérani, and G. Lérondel. 2010. Waveguiding-assisted random lasing in epitaxial ZnO thin film. Applied Physics Letters 97 (26): 261109.CrossRef
108.
go back to reference Kreibig, U., and M. Vollmer. 1995. Optical Properties of Metal Clusters (Vol. 25). Berlin: Springer. Kreibig, U., and M. Vollmer. 1995. Optical Properties of Metal Clusters (Vol. 25). Berlin: Springer.
109.
go back to reference Hou, W., Z. Liu, P. Pavaskar, W.H. Hung, and S.B. Cronin. 2011. Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange Under Visible Light. Journal of Catalysis 277 (2): 149–153.CrossRef Hou, W., Z. Liu, P. Pavaskar, W.H. Hung, and S.B. Cronin. 2011. Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange Under Visible Light. Journal of Catalysis 277 (2): 149–153.CrossRef
110.
go back to reference Awazu, K., M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe. 2008. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society 130 (5): 1676–1680.CrossRef Awazu, K., M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe. 2008. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society 130 (5): 1676–1680.CrossRef
111.
go back to reference Roy, S.C., O.K. Varghese, M. Paulose, and C.A. Grimes. 2010. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 4 (3): 1259–1278.CrossRef Roy, S.C., O.K. Varghese, M. Paulose, and C.A. Grimes. 2010. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 4 (3): 1259–1278.CrossRef
112.
go back to reference Lewis, N.S., G. Crabtree., A.J. Nozik., M.R. Wasielewski., P. Alivisatos., H. Kung., J. Tsao, E. Chandler., W. Walukiewicz., M. Spitler., R. Ellingson., R. Overend., J. Mazer., M. Gress., J. Horwitz., C. Ashton., B. Herndon., L. Shapard., and R.M. Nault. 2005. Basic Research Needs for Solar Energy Utilization; DOESC (USDOE Office of Science (SC)): Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, p Medium: ED. Lewis, N.S., G. Crabtree., A.J. Nozik., M.R. Wasielewski., P. Alivisatos., H. Kung., J. Tsao, E. Chandler., W. Walukiewicz., M. Spitler., R. Ellingson., R. Overend., J. Mazer., M. Gress., J. Horwitz., C. Ashton., B. Herndon., L. Shapard., and R.M. Nault. 2005. Basic Research Needs for Solar Energy Utilization; DOESC (USDOE Office of Science (SC)): Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, p Medium: ED.
113.
go back to reference Kamat, P.V. 2007. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C 111 (7): 2834–2860.CrossRef Kamat, P.V. 2007. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C 111 (7): 2834–2860.CrossRef
114.
go back to reference Yan, S., H. Yu, N. Wang, Z. Li, and Z. Zou. 2012. Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chemical Communications 48 (7): 1048–1050.CrossRef Yan, S., H. Yu, N. Wang, Z. Li, and Z. Zou. 2012. Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O4-modified mesoporous ZnGaNO under visible light irradiation. Chemical Communications 48 (7): 1048–1050.CrossRef
115.
go back to reference Li, H., Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, and X. Li. 2011. Photocatalytic Reduction of Carbon Dioxide to Methanol by Cu2O/SiC Nanocrystallite Under Visible Light Irradiation. Journal of Natural Gas Chemistry 20 (2): 145–150.CrossRef Li, H., Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, and X. Li. 2011. Photocatalytic Reduction of Carbon Dioxide to Methanol by Cu2O/SiC Nanocrystallite Under Visible Light Irradiation. Journal of Natural Gas Chemistry 20 (2): 145–150.CrossRef
116.
go back to reference Halmann, M. 1978. Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Phosphide in Liquid Junction Solar Cells. Nature 275 (5676): 115–116.CrossRef Halmann, M. 1978. Photoelectrochemical Reduction of Aqueous Carbon Dioxide on p-type Gallium Phosphide in Liquid Junction Solar Cells. Nature 275 (5676): 115–116.CrossRef
117.
go back to reference Varghese, O.K., M. Paulose, T.J. LaTempa, and C.A. Grimes. 2009. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 9 (2): 731–737.CrossRef Varghese, O.K., M. Paulose, T.J. LaTempa, and C.A. Grimes. 2009. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 9 (2): 731–737.CrossRef
118.
go back to reference Hunyadi Murph, S.E., H. Sessions., Y. Kun., and Y.Zhao. 2014. Nanocomposite Photocatalysts, Conversion of CO2 to Fuel. In American Chemical Society National Meeting (Vol. C1 Chemistry), Denver. Hunyadi Murph, S.E., H. Sessions., Y. Kun., and Y.Zhao. 2014. Nanocomposite Photocatalysts, Conversion of CO2 to Fuel. In American Chemical Society National Meeting (Vol. C1 Chemistry), Denver.
119.
go back to reference Narayan, T.C., A. Baldi., A.L. Koh., R. Sinclair., and J.A. Dionne. 2016. Reconstructing Solute-Induced Phase Transformations Within Individual Nanocrystals. Nature Materials 15: 768–774. Narayan, T.C., A. Baldi., A.L. Koh., R. Sinclair., and J.A. Dionne. 2016. Reconstructing Solute-Induced Phase Transformations Within Individual Nanocrystals. Nature Materials 15: 768–774.
120.
go back to reference Huang, X., P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed. 2006. Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochemistry and Photobiology 82 (2): 412–417.CrossRef Huang, X., P.K. Jain, I.H. El-Sayed, and M.A. El-Sayed. 2006. Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochemistry and Photobiology 82 (2): 412–417.CrossRef
121.
go back to reference Zharov, V.P., K.E. Mercer, E.N. Galitovskaya, and M.S. Smeltzer. 2006. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles. Biophysical Journal 90 (2): 619–627.CrossRef Zharov, V.P., K.E. Mercer, E.N. Galitovskaya, and M.S. Smeltzer. 2006. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles. Biophysical Journal 90 (2): 619–627.CrossRef
122.
go back to reference Singh, M., S.o. Lara., and S. Tlali. 2016. Effects of Size and Shape on the Specific Heat, Melting Entropy and Enthalpy of Nanomaterials. Journal of Taibah University for Science. Singh, M., S.o. Lara., and S. Tlali. 2016. Effects of Size and Shape on the Specific Heat, Melting Entropy and Enthalpy of Nanomaterials. Journal of Taibah University for Science.
123.
go back to reference Liu, Q., J. Tang, Y. Zhang, A. Martinez, S. Wang, S. He, T.J. White, and I.I. Smalyukh. 2014. Shape-Dependent Dispersion and Alignment of Nonaggregating Plasmonic Gold Nanoparticles in Lyotropic and Thermotropic Liquid Crystals. Physical Review E 89 (5): 052505.CrossRef Liu, Q., J. Tang, Y. Zhang, A. Martinez, S. Wang, S. He, T.J. White, and I.I. Smalyukh. 2014. Shape-Dependent Dispersion and Alignment of Nonaggregating Plasmonic Gold Nanoparticles in Lyotropic and Thermotropic Liquid Crystals. Physical Review E 89 (5): 052505.CrossRef
124.
go back to reference van der Beek, D., A.V. Petukhov, P. Davidson, J. Ferré, J.P. Jamet, H.H. Wensink, G.J. Vroege, W. Bras, and H.N.W. Lekkerkerker. 2006. Magnetic-Field-Induced Orientational Order in the Isotropic Phase of Hard Colloidal Platelets. Physical Review E 73 (4): 041402.CrossRef van der Beek, D., A.V. Petukhov, P. Davidson, J. Ferré, J.P. Jamet, H.H. Wensink, G.J. Vroege, W. Bras, and H.N.W. Lekkerkerker. 2006. Magnetic-Field-Induced Orientational Order in the Isotropic Phase of Hard Colloidal Platelets. Physical Review E 73 (4): 041402.CrossRef
125.
go back to reference Ryan, K.M., A. Mastroianni, K.A. Stancil, H. Liu, and A.P. Alivisatos. 2006. Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Letters 6 (7): 1479–1482.CrossRef Ryan, K.M., A. Mastroianni, K.A. Stancil, H. Liu, and A.P. Alivisatos. 2006. Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Letters 6 (7): 1479–1482.CrossRef
126.
go back to reference Caswell, K.K., J.N. Wilson, U.H.F. Bunz, and C.J. Murphy. 2003. Preferential End-to-End Assembly of Gold Nanorods by Biotin—Streptavidin Connectors. Journal of the American Chemical Society 125 (46): 13914–13915.CrossRef Caswell, K.K., J.N. Wilson, U.H.F. Bunz, and C.J. Murphy. 2003. Preferential End-to-End Assembly of Gold Nanorods by Biotin—Streptavidin Connectors. Journal of the American Chemical Society 125 (46): 13914–13915.CrossRef
127.
go back to reference Kwaadgras, B.W., M. Dijkstra., and R.v. Roij. 2012. Communication: Bulkiness Versus Anisotropy: The Optimal Shape of Polarizable Brownian Nanoparticles for Alignment in Electric Fields. The Journal of Chemical Physics 136 (13): 131102. Kwaadgras, B.W., M. Dijkstra., and R.v. Roij. 2012. Communication: Bulkiness Versus Anisotropy: The Optimal Shape of Polarizable Brownian Nanoparticles for Alignment in Electric Fields. The Journal of Chemical Physics 136 (13): 131102.
128.
go back to reference Maier, S.A., M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, and H.A. Atwater. 2001. Plasmonics—A Route to Nanoscale Optical Devices. Advanced Materials 13 (19): 1501–1505.CrossRef Maier, S.A., M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, and H.A. Atwater. 2001. Plasmonics—A Route to Nanoscale Optical Devices. Advanced Materials 13 (19): 1501–1505.CrossRef
129.
go back to reference Maier, S.A., P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha. 2003. Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nature Materials 2 (4): 229–232.CrossRef Maier, S.A., P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha. 2003. Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides. Nature Materials 2 (4): 229–232.CrossRef
130.
go back to reference Atwater, H.A., S. Maier, A. Polman, J.A. Dionne, and L. Sweatlock. 2011. The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld. MRS Bulletin 30 (5): 385–389.CrossRef Atwater, H.A., S. Maier, A. Polman, J.A. Dionne, and L. Sweatlock. 2011. The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld. MRS Bulletin 30 (5): 385–389.CrossRef
131.
go back to reference Brzobohatý, O., M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek. 2015. Non-Spherical Gold Nanoparticles Trapped in Optical Tweezers: Shape Matters. Optics Express 23 (7): 8179–8189.CrossRef Brzobohatý, O., M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek. 2015. Non-Spherical Gold Nanoparticles Trapped in Optical Tweezers: Shape Matters. Optics Express 23 (7): 8179–8189.CrossRef
132.
go back to reference Jain, P.K., S. Eustis, and M.A. El-Sayed. 2006. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. The Journal of Physical Chemistry B 110 (37): 18243–18253.CrossRef Jain, P.K., S. Eustis, and M.A. El-Sayed. 2006. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. The Journal of Physical Chemistry B 110 (37): 18243–18253.CrossRef
Metadata
Title
Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties
Author
Simona E. Hunyadi Murph
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59662-4_5

Premium Partners