Skip to main content
Top

2024 | OriginalPaper | Chapter

Anomaly Detection with a LSTM Autoencoder Using InfluxDB

Authors : João Peixoto, João Sousa, Ricardo Carvalho, Martinho Soares, Ricardo Cardoso, Ana Reis

Published in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the manufacturing industry, anomalies are an unfortunate but inevitable reality. If left unaddressed, they can lead to costly production defects and halted production lines. However, with the rise of Industry 4.0, many industrial machines are now equipped with sensors that can be used to detect anomalous behaviors, allowing for early identification and prevention of defects. Therefore, this study presents a solution using a Long Short-Term Memory (LSTM) autoencoder to detect abnormal behavior in an industrial machine temperature sensor dataset. The algorithm is compared with conventional methods, further demonstrating its capabilities in anomaly detection. Additionally, an implementation architecture is proposed using InfluxDB and Telegraf software, providing a simulated real-world application of the proposed solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lindemann, B., Maschler, B., Sahlab, N., Weyrich, M.: A survey on anomaly detection for technical systems using LSTM networks. Comput. Ind. (2021) Lindemann, B., Maschler, B., Sahlab, N., Weyrich, M.: A survey on anomaly detection for technical systems using LSTM networks. Comput. Ind. (2021)
2.
go back to reference Hou, B., Yang, J., Wang, P., Yan, R.: LSTM based auto-encoder model for ECG arrhythmias classification. IEEE Trans. Instrum. Meas. 1 (2019) Hou, B., Yang, J., Wang, P., Yan, R.: LSTM based auto-encoder model for ECG arrhythmias classification. IEEE Trans. Instrum. Meas. 1 (2019)
3.
go back to reference Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S., Boulic, M.: LSTM-autoencoder based anomaly detection for indoor air quality time series data (2022) Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe, S., Boulic, M.: LSTM-autoencoder based anomaly detection for indoor air quality time series data (2022)
4.
go back to reference Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection (2016) Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection (2016)
5.
go back to reference Lee M., Lin J., Gan E.: ReRe: a lightweight real-time ready-to-go anomaly detection approach for time series. In: 2020 IEEE 4th Annual Computers, Software and Applications Conference (COMPSAC), pp. 322–327. Madrid, Spain (2020) Lee M., Lin J., Gan E.: ReRe: a lightweight real-time ready-to-go anomaly detection approach for time series. In: 2020 IEEE 4th Annual Computers, Software and Applications Conference (COMPSAC), pp. 322–327. Madrid, Spain (2020)
7.
go back to reference Liu, F., Ting K., Zhou Z.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. Pisa, Italy (2008) Liu, F., Ting K., Zhou Z.: Isolation forest. In: Eighth IEEE International Conference on Data Mining, pp. 413–422. Pisa, Italy (2008)
8.
go back to reference Hochreiter, S., Schmidhuber, J.: Long Short-term memory. Neural Comput. (1997) Hochreiter, S., Schmidhuber, J.: Long Short-term memory. Neural Comput. (1997)
Metadata
Title
Anomaly Detection with a LSTM Autoencoder Using InfluxDB
Authors
João Peixoto
João Sousa
Ricardo Carvalho
Martinho Soares
Ricardo Cardoso
Ana Reis
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_9

Premium Partner