Skip to main content
Top
Published in: Cellulose 8/2018

07-06-2018 | Original Paper

Anti-solvents tuning cellulose nanoparticles through two competitive regeneration routes

Authors: Zhaosheng Fan, Jianbo Chen, Wenji Guo, Fang Ma, Suqin Sun, Qun Zhou

Published in: Cellulose | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, cellulose nanoparticles regenerated by water, methanol, ethanol and n-propanol as the anti-solvents from ionic liquid solution were studied systematically. Crystallinity and enthalpy in cellulose degradation of the regenerated cellulose decreased in the order water > methanol > ethanol > n-propanol. Nevertheless, the thermal stability of the regenerated cellulose showed an opposite trend. In addition, morphology of regenerated cellulose changed sharply with the variation of anti-solvents. Moreover, we introduced Kamlet–Taft parameters of anti-solvents to analyze the crystallinity, enthalpy in cellulose degradation and thermal stability variation of regenerated cellulose. Hydrogen bond acidity and basicity of anti-solvent definitely drove the property variation of regenerated cellulose nanoparticles to opposite directions. Furtherly, we proposed two competitive cellulose regeneration routes, providing a reasonable explanation to the crystallinity, enthalpy in cellulose degradation and thermal stability variation of regenerated cellulose nanoparticles. Our work successfully demonstrate that H-bond acidity/basicity of anti-solvent could tune the property of regenerated cellulose nanoparticles, unveiling the competitive routes of cellulose regeneration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abushammala H, Krossing I, Laborie M (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616CrossRefPubMed Abushammala H, Krossing I, Laborie M (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616CrossRefPubMed
go back to reference Alemán-Domínguez ME, Ortega Z, Benítez AN, Vilariño-Feltrer G, Gómez-Tejedor JA, Vallés-Lluch A (2018) Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. J Appl Polym Sci 135:46134–46142CrossRef Alemán-Domínguez ME, Ortega Z, Benítez AN, Vilariño-Feltrer G, Gómez-Tejedor JA, Vallés-Lluch A (2018) Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. J Appl Polym Sci 135:46134–46142CrossRef
go back to reference Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629CrossRefPubMed Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629CrossRefPubMed
go back to reference Basu S, Omadjela O, Gaddes D, Tadigadapa S, Zimmer J, Catchmark JM (2016) Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10:1896–1907CrossRefPubMed Basu S, Omadjela O, Gaddes D, Tadigadapa S, Zimmer J, Catchmark JM (2016) Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10:1896–1907CrossRefPubMed
go back to reference Carrillo F, Colom X, Sunol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef Carrillo F, Colom X, Sunol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234CrossRef
go back to reference Ding Z, Chi Z, Gu W, Gu S, Liu J, Wang H (2012) Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydr Polym 89:7–16CrossRefPubMed Ding Z, Chi Z, Gu W, Gu S, Liu J, Wang H (2012) Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydr Polym 89:7–16CrossRefPubMed
go back to reference Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574CrossRef Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574CrossRef
go back to reference Fan Z, Chen J, Guo W, Ma F, Sun S, Zhou Q (2017) Crystallinity of regenerated cellulose from [Bmim]Cl dependent on the hydrogen bond acidity/basicity of anti-solvents. RSC Adv 7:41004–41010CrossRef Fan Z, Chen J, Guo W, Ma F, Sun S, Zhou Q (2017) Crystallinity of regenerated cellulose from [Bmim]Cl dependent on the hydrogen bond acidity/basicity of anti-solvents. RSC Adv 7:41004–41010CrossRef
go back to reference French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609CrossRef French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609CrossRef
go back to reference Gupta KM, Hu Z, Jiang J (2013) Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv 3:12794–12801CrossRef Gupta KM, Hu Z, Jiang J (2013) Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv 3:12794–12801CrossRef
go back to reference Hattori K, Arai A (2016) Preparation and hydrolysis of water-stable amorphous cellulose. ACS Sustain Chem Eng 4:1180–1186CrossRef Hattori K, Arai A (2016) Preparation and hydrolysis of water-stable amorphous cellulose. ACS Sustain Chem Eng 4:1180–1186CrossRef
go back to reference Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromol 13:2896–2905CrossRef Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromol 13:2896–2905CrossRef
go back to reference He J, Cui S, Wang S (2008) Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 107:1029–1038CrossRef He J, Cui S, Wang S (2008) Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 107:1029–1038CrossRef
go back to reference Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170CrossRef Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170CrossRef
go back to reference Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromol 15:1498–1506CrossRef Hossain KMZ, Hasan MS, Boyd D, Rudd CD, Ahmed I, Thielemans W (2014) Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromol 15:1498–1506CrossRef
go back to reference Jandura P, Kokta BV, Riedl B (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365CrossRef Jandura P, Kokta BV, Riedl B (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365CrossRef
go back to reference Jiang J, Xiao Y, Huang W, Gong P, Peng S, He J, Fan M, Wang K (2017) An insight into the influence of hydrogen bond acceptors on cellulose/1-allyl-3-methyl imidazolium chloride solution. Carbohydr Polym 178:295–301CrossRefPubMed Jiang J, Xiao Y, Huang W, Gong P, Peng S, He J, Fan M, Wang K (2017) An insight into the influence of hydrogen bond acceptors on cellulose/1-allyl-3-methyl imidazolium chloride solution. Carbohydr Polym 178:295–301CrossRefPubMed
go back to reference Li Y, Liu X, Zhang S, Yao Y, Yao X, Xu J, Lu X (2015) Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 17:17894–17905CrossRefPubMed Li Y, Liu X, Zhang S, Yao Y, Yao X, Xu J, Lu X (2015) Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 17:17894–17905CrossRefPubMed
go back to reference Liu H, Sale KL, Simmons BA, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRefPubMed Liu H, Sale KL, Simmons BA, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRefPubMed
go back to reference Liu Z, Sun X, Hao M, Huang C, Xue Z, Mu T (2015) Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr Polym 117:99–105CrossRefPubMed Liu Z, Sun X, Hao M, Huang C, Xue Z, Mu T (2015) Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr Polym 117:99–105CrossRefPubMed
go back to reference Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335CrossRef Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335CrossRef
go back to reference Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J (2012) Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. Chem Commun 48:6283–6285CrossRef Luo N, Lv Y, Wang D, Zhang J, Wu J, He J, Zhang J (2012) Direct visualization of solution morphology of cellulose in ionic liquids by conventional TEM at room temperature. Chem Commun 48:6283–6285CrossRef
go back to reference Marcus Y (1991) The effectiveness of solvents as hydrogen bond donors. J Solut Chem 20:929–944CrossRef Marcus Y (1991) The effectiveness of solvents as hydrogen bond donors. J Solut Chem 20:929–944CrossRef
go back to reference Mi Q, Ma SR, Yu J, He J, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRef Mi Q, Ma SR, Yu J, He J, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsenf J, Jeff Y (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsenf J, Jeff Y (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
go back to reference Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559CrossRef Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559CrossRef
go back to reference Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102CrossRef Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357:97–102CrossRef
go back to reference Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed
go back to reference Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef
go back to reference Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392CrossRef Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392CrossRef
go back to reference Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775CrossRefPubMed Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775CrossRefPubMed
go back to reference Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273CrossRef
go back to reference Stephen JE (2010) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315 Stephen JE (2010) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315
go back to reference Sun X, Chi Y, Mu T (2014) Studies on staged precipitation of cellulose from an ionic liquid by compressed carbon dioxide. Green Chem 16:2736–2744CrossRef Sun X, Chi Y, Mu T (2014) Studies on staged precipitation of cellulose from an ionic liquid by compressed carbon dioxide. Green Chem 16:2736–2744CrossRef
go back to reference Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMed Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMed
go back to reference Wan J, Zhang J, Yu J, Zhang J (2017) Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries. ACS Appl Mater Interfaces 9:24591–24599CrossRefPubMed Wan J, Zhang J, Yu J, Zhang J (2017) Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries. ACS Appl Mater Interfaces 9:24591–24599CrossRefPubMed
go back to reference Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRefPubMed Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRefPubMed
go back to reference Wang G, Guo J, Zhuang L, Wang Y, Xu B (2015) Dissolution and regeneration of hide powder/cellulose composite in Gemini imidazolium ionic liquid. Int J Biol Macromol 76:70–79CrossRefPubMed Wang G, Guo J, Zhuang L, Wang Y, Xu B (2015) Dissolution and regeneration of hide powder/cellulose composite in Gemini imidazolium ionic liquid. Int J Biol Macromol 76:70–79CrossRefPubMed
go back to reference Wang S, Zhang X, Wu X, Lu C (2016) Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12:845–852CrossRefPubMed Wang S, Zhang X, Wu X, Lu C (2016) Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12:845–852CrossRefPubMed
go back to reference Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal–graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509CrossRefPubMed Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal–graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509CrossRefPubMed
go back to reference Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef
Metadata
Title
Anti-solvents tuning cellulose nanoparticles through two competitive regeneration routes
Authors
Zhaosheng Fan
Jianbo Chen
Wenji Guo
Fang Ma
Suqin Sun
Qun Zhou
Publication date
07-06-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 8/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1897-x

Other articles of this Issue 8/2018

Cellulose 8/2018 Go to the issue