Skip to main content
Top

2016 | OriginalPaper | Chapter

Antimicrobial Properties of Graphene Nanomaterials: Mechanisms and Applications

Authors : Adel Soroush, Douglas Rice, Md Saifur Rahaman, François Perreault

Published in: Graphene-based Materials in Health and Environment

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotechnology opens new possibilities for the development of antimicrobial materials. Of particular interest are graphene-based nanomaterials, which possess unique antimicrobial properties and offer multiple routes for functionalization into advanced nanocomposite materials. In this chapter, we review the current state of knowledge regarding the fundamental aspects of the antimicrobial interactions of graphene and graphene-based materials. Then, an overview of the multiple graphene-based composite materials developed for antimicrobial applications is provided, with an analysis of the different chemical functionalization routes used to modify graphene and graphene oxide with biocidal compounds. An analysis of the potential of graphene-based nanomaterials in the development of novel antimicrobial surfaces and coatings is also conducted, with an emphasis on the field of membrane processes, where significant developments have been made. Finally, promising avenues for material development are identified and critical questions surrounding graphene-based nanomaterials are discussed, providing a guide for future development and application of antimicrobial graphene-based materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
9.
go back to reference Xiu Z, Zhang Q, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.1021/nl301934w Xiu Z, Zhang Q, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.​1021/​nl301934w
10.
14.
17.
go back to reference Perreault F, Melegari SP, Fuzinatto CF et al (2014) Toxicity of pamam-coated gold nanoparticles in different unicellular models. Environ Toxicol 29:328–336. doi:10.1002/tox.21761 CrossRef Perreault F, Melegari SP, Fuzinatto CF et al (2014) Toxicity of pamam-coated gold nanoparticles in different unicellular models. Environ Toxicol 29:328–336. doi:10.​1002/​tox.​21761 CrossRef
19.
go back to reference Wang Y-W, Cao A, Jiang Y et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798. doi:10.1021/am4053317 CrossRef Wang Y-W, Cao A, Jiang Y et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798. doi:10.​1021/​am4053317 CrossRef
20.
go back to reference Tong T, Shereef A, Wu J et al (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12487–12495. doi:10.1021/es403079h CrossRef Tong T, Shereef A, Wu J et al (2013) Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ Sci Technol 47:12487–12495. doi:10.​1021/​es403079h CrossRef
21.
go back to reference Kubacka A, Diez MS, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134. doi:10.1038/srep04134 CrossRef Kubacka A, Diez MS, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:4134. doi:10.​1038/​srep04134 CrossRef
22.
go back to reference Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi:10.1021/es801869m CrossRef Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi:10.​1021/​es801869m CrossRef
23.
go back to reference Lyon DY, Brunet L, Hinkal GW et al (2008) Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543. doi:10.1021/nl0726398 CrossRef Lyon DY, Brunet L, Hinkal GW et al (2008) Antibacterial activity of fullerene water suspensions (nC 60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543. doi:10.​1021/​nl0726398 CrossRef
24.
25.
26.
go back to reference Pasquini LM, Sekol RC, Taylor AD et al (2013) Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–8783. doi:10.1021/es401786s Pasquini LM, Sekol RC, Taylor AD et al (2013) Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–8783. doi:10.​1021/​es401786s
28.
29.
go back to reference Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.1021/nn202451x CrossRef Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. doi:10.​1021/​nn202451x CrossRef
30.
go back to reference Mangadlao JD, Santos CM, Felipe MJL et al (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chem Commun 1:1–4. doi:10.1039/C4CC07836E Mangadlao JD, Santos CM, Felipe MJL et al (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chem Commun 1:1–4. doi:10.​1039/​C4CC07836E
32.
go back to reference Wang J, Wei Y, Shi X, Gao H (2013) Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption. RSC Adv 3:15776–15782. doi:10.1039/c3ra40392k CrossRef Wang J, Wei Y, Shi X, Gao H (2013) Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption. RSC Adv 3:15776–15782. doi:10.​1039/​c3ra40392k CrossRef
35.
go back to reference Li Y, Yuan H, von dem Bussche A et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. doi:10.1073/pnas.1222276110 CrossRef Li Y, Yuan H, von dem Bussche A et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110:12295–12300. doi:10.​1073/​pnas.​1222276110 CrossRef
37.
go back to reference Lei H, Zhou X, Wu H et al (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30:4678–4683. doi:10.1021/la500788z CrossRef Lei H, Zhou X, Wu H et al (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30:4678–4683. doi:10.​1021/​la500788z CrossRef
38.
go back to reference Frost R, Jönsson GE, Chakarov D et al (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362. doi:10.1021/nl203107k CrossRef Frost R, Jönsson GE, Chakarov D et al (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362. doi:10.​1021/​nl203107k CrossRef
40.
go back to reference Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880. doi:10.1021/es403864v CrossRef Chen KL, Bothun GD (2014) Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol 48:873–880. doi:10.​1021/​es403864v CrossRef
41.
43.
go back to reference Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2:1559–1565. doi:10.1021/sc500044p CrossRef Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2:1559–1565. doi:10.​1021/​sc500044p CrossRef
44.
go back to reference Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 71–76. doi:10.1021/ez4001356 Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 71–76. doi:10.​1021/​ez4001356
45.
go back to reference Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.1039/c3nr04941h CrossRef Chen J, Peng H, Wang X et al (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889. doi:10.​1039/​c3nr04941h CrossRef
47.
go back to reference Gurunathan S, Han JW, Dayem AA et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi:10.2147/IJN.S37397 CrossRef Gurunathan S, Han JW, Dayem AA et al (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi:10.​2147/​IJN.​S37397 CrossRef
48.
50.
go back to reference Krishnamoorthy K, Veerapandian M, Zhang L, Yun K (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280−17287. doi:10.1021/jp3047054 Krishnamoorthy K, Veerapandian M, Zhang L, Yun K (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280−17287. doi:10.​1021/​jp3047054
53.
go back to reference Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.1021/jp200686k CrossRef Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. doi:10.​1021/​jp200686k CrossRef
54.
go back to reference Johnston HJ, Hutchison GR, Christensen FM et al (2009) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182. doi:10.1093/toxsci/kfp265 CrossRef Johnston HJ, Hutchison GR, Christensen FM et al (2009) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–182. doi:10.​1093/​toxsci/​kfp265 CrossRef
55.
57.
go back to reference Hurum DC, Agrios AF, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. doi:10.1021/Jp0273934 CrossRef Hurum DC, Agrios AF, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. doi:10.​1021/​Jp0273934 CrossRef
58.
go back to reference Pasquini LM, Hashmi SM, Sommer TJ et al (2012) Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–6305. doi:10.1021/es300514s CrossRef Pasquini LM, Hashmi SM, Sommer TJ et al (2012) Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–6305. doi:10.​1021/​es300514s CrossRef
64.
go back to reference Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405. doi:10.1021/nl902741x CrossRef Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405. doi:10.​1021/​nl902741x CrossRef
65.
66.
go back to reference Lin Y, Watson KA, Fallbach MJ et al (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884. doi:10.1021/nn8009097 CrossRef Lin Y, Watson KA, Fallbach MJ et al (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884. doi:10.​1021/​nn8009097 CrossRef
67.
70.
go back to reference Soroush A, Ma W, Cyr M et al (2016) In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ Sci Technol Lett 3:13–18. doi:10.1021/acs.estlett.5b00304 CrossRef Soroush A, Ma W, Cyr M et al (2016) In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ Sci Technol Lett 3:13–18. doi:10.​1021/​acs.​estlett.​5b00304 CrossRef
71.
go back to reference Cai X, Lin M, Tan S et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N Y 50:3407–3415. doi:10.1016/j.carbon.2012.02.002 CrossRef Cai X, Lin M, Tan S et al (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N Y 50:3407–3415. doi:10.​1016/​j.​carbon.​2012.​02.​002 CrossRef
73.
go back to reference He T, Liu H, Zhou Y et al (2014) Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 27:673–682. doi:10.1007/s10534-014-9756-1 CrossRef He T, Liu H, Zhou Y et al (2014) Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 27:673–682. doi:10.​1007/​s10534-014-9756-1 CrossRef
75.
go back to reference Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y CrossRef Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.​1007/​s11051-010-9900-y CrossRef
76.
go back to reference Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.1039/C5EN00086F CrossRef Soroush A, Ma W, Silvino Y, Rahaman MS (2015) Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ Sci Nano 2:395–405. doi:10.​1039/​C5EN00086F CrossRef
77.
go back to reference Faria AF, Perreault F, Shaulsky E et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.1021/acsami.5b01639 CrossRef Faria AF, Perreault F, Shaulsky E et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759. doi:10.​1021/​acsami.​5b01639 CrossRef
79.
80.
go back to reference Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. doi:10.1021/es404232s CrossRef Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. doi:10.​1021/​es404232s CrossRef
81.
go back to reference Ouyang Y, Cai X, Shi Q et al (2013) Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf B Biointerfaces 107:107–114. doi:10.1016/j.colsurfb.2013.01.073 CrossRef Ouyang Y, Cai X, Shi Q et al (2013) Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf B Biointerfaces 107:107–114. doi:10.​1016/​j.​colsurfb.​2013.​01.​073 CrossRef
82.
go back to reference Karimi L, Yazdanshenas ME, Khajavi R et al (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827. doi:10.1007/s10570-014-0385-1 CrossRef Karimi L, Yazdanshenas ME, Khajavi R et al (2014) Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21:3813–3827. doi:10.​1007/​s10570-014-0385-1 CrossRef
84.
go back to reference He W, Huang H, Yan J, Zhu J (2013) Photocatalytic and antibacterial properties of Au–TiO2 nanocomposite on monolayer graphene: from experiment to theory. J Appl Phys 114:204701. doi:10.1063/1.4836875 CrossRef He W, Huang H, Yan J, Zhu J (2013) Photocatalytic and antibacterial properties of Au–TiO2 nanocomposite on monolayer graphene: from experiment to theory. J Appl Phys 114:204701. doi:10.​1063/​1.​4836875 CrossRef
85.
go back to reference Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722. doi:10.1039/c3ra43992e Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722. doi:10.​1039/​c3ra43992e
89.
go back to reference Tian T, Shi X, Cheng L et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6:8542–8548. doi:10.1021/am5022914 CrossRef Tian T, Shi X, Cheng L et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6:8542–8548. doi:10.​1021/​am5022914 CrossRef
90.
91.
go back to reference Santhosh C, Kollu P, Doshi S et al (2014) Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application. RSC Adv 4:28300. doi:10.1039/c4ra02913e CrossRef Santhosh C, Kollu P, Doshi S et al (2014) Adsorption, photodegradation and antibacterial study of graphene–Fe3O4 nanocomposite for multipurpose water purification application. RSC Adv 4:28300. doi:10.​1039/​c4ra02913e CrossRef
93.
go back to reference Cai X, Tan S, Lin M et al (2011) Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 27:7828–7835. doi:10.1021/la201499s CrossRef Cai X, Tan S, Lin M et al (2011) Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir 27:7828–7835. doi:10.​1021/​la201499s CrossRef
94.
96.
go back to reference Some S, Ho SM, Dua P et al (2012) Dual functions of highly potent graphene derivative-poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6:7151–7161. doi:10.1021/nn302215y CrossRef Some S, Ho SM, Dua P et al (2012) Dual functions of highly potent graphene derivative-poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6:7151–7161. doi:10.​1021/​nn302215y CrossRef
97.
go back to reference Yuan B, Zhu T, Zhang Z et al (2011) Self-assembly of multilayered functional films based on graphene oxide sheets for controlled release. J Mater Chem 21:3471. doi:10.1039/c0jm03643a CrossRef Yuan B, Zhu T, Zhang Z et al (2011) Self-assembly of multilayered functional films based on graphene oxide sheets for controlled release. J Mater Chem 21:3471. doi:10.​1039/​c0jm03643a CrossRef
101.
go back to reference Polte J, Tuaev X, Wuithschick M et al (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802. doi:10.1021/nn301724z CrossRef Polte J, Tuaev X, Wuithschick M et al (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6:5791–5802. doi:10.​1021/​nn301724z CrossRef
105.
go back to reference Das MR, Sarma RK, Borah SC et al (2013) The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf B Biointerfaces 105:128–136. doi:10.1016/j.colsurfb.2012.12.033 CrossRef Das MR, Sarma RK, Borah SC et al (2013) The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids Surf B Biointerfaces 105:128–136. doi:10.​1016/​j.​colsurfb.​2012.​12.​033 CrossRef
106.
go back to reference Zhou Y, Yang J, He T et al (2013) Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9:3445–3454. doi:10.1002/smll.201202455 CrossRef Zhou Y, Yang J, He T et al (2013) Highly stable and dispersive silver nanoparticle-graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9:3445–3454. doi:10.​1002/​smll.​201202455 CrossRef
107.
go back to reference Zhang Z, Xu F, Yang W et al (2011) A facile one-pot method to high-quality Ag–graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun (Camb) 47:6440–6442. doi:10.1039/c1cc11125f CrossRef Zhang Z, Xu F, Yang W et al (2011) A facile one-pot method to high-quality Ag–graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun (Camb) 47:6440–6442. doi:10.​1039/​c1cc11125f CrossRef
109.
go back to reference Barua S, Thakur S, Aidew L et al (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4:9777. doi:10.1039/c3ra46835f CrossRef Barua S, Thakur S, Aidew L et al (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4:9777. doi:10.​1039/​c3ra46835f CrossRef
110.
go back to reference Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. doi:10.1021/cr400407a CrossRef Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. doi:10.​1021/​cr400407a CrossRef
111.
go back to reference Zhang Z, Zhang J, Zhang B, Tang J (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5:118–123. doi:10.1039/c2nr32092d CrossRef Zhang Z, Zhang J, Zhang B, Tang J (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5:118–123. doi:10.​1039/​c2nr32092d CrossRef
112.
114.
go back to reference Liu J, Fu S, Yuan B et al (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281. doi:10.1021/ja100938r CrossRef Liu J, Fu S, Yuan B et al (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281. doi:10.​1021/​ja100938r CrossRef
118.
go back to reference de Faria AF, de Moraes ACM, Marcato PD et al (2014) Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 16:2110. doi:10.1007/s11051-013-2110-7 CrossRef de Faria AF, de Moraes ACM, Marcato PD et al (2014) Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 16:2110. doi:10.​1007/​s11051-013-2110-7 CrossRef
119.
go back to reference Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481. doi:10.1039/c2jm33398h CrossRef Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481. doi:10.​1039/​c2jm33398h CrossRef
121.
124.
go back to reference Shamsuddin N, Das DB, Starov VM (2015) Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: circular cross-flow compared with stirred dead end flow. Chem Eng J 276:331–339. doi:10.1016/j.cej.2015.04.075 CrossRef Shamsuddin N, Das DB, Starov VM (2015) Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: circular cross-flow compared with stirred dead end flow. Chem Eng J 276:331–339. doi:10.​1016/​j.​cej.​2015.​04.​075 CrossRef
125.
127.
go back to reference Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. doi:10.1002/adma.201001215 CrossRef Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. doi:10.​1002/​adma.​201001215 CrossRef
131.
go back to reference Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials—an interdisciplinary review. Chem Res Toxicol 15–34. doi:10.1021/tx200339h Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials—an interdisciplinary review. Chem Res Toxicol 15–34. doi:10.​1021/​tx200339h
134.
go back to reference Perreault F, Jaramillo H, Xie M et al (2016) Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environ Sci Technol. doi:10.1021/acs.est.5b06364 Perreault F, Jaramillo H, Xie M et al (2016) Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environ Sci Technol. doi:10.​1021/​acs.​est.​5b06364
138.
go back to reference Zhao C, Xu X, Chen J, Yang F (2013) Journal of Environmental Chemical Engineering Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Biochem Pharmacol 1:349–354. doi:10.1016/j.jece.2013.05.014 Zhao C, Xu X, Chen J, Yang F (2013) Journal of Environmental Chemical Engineering Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. Biochem Pharmacol 1:349–354. doi:10.​1016/​j.​jece.​2013.​05.​014
142.
go back to reference Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces 5:12510–12519. doi:10.1021/am403790s CrossRef Choi W, Choi J, Bang J, Lee J (2013) Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces 5:12510–12519. doi:10.​1021/​am403790s CrossRef
144.
go back to reference Duan L, Wang Y, Zhang Y, Liu J (2015) Applied surface science graphene immobilized enzyme/ polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl Surf Sci 355:436–445. doi:10.1016/j.apsusc.2015.07.127 CrossRef Duan L, Wang Y, Zhang Y, Liu J (2015) Applied surface science graphene immobilized enzyme/ polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl Surf Sci 355:436–445. doi:10.​1016/​j.​apsusc.​2015.​07.​127 CrossRef
147.
148.
149.
152.
153.
156.
go back to reference Zhang J, Xu Z, Shan M et al (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci 448:81–92. doi:10.1016/j.memsci.2013.07.064 CrossRef Zhang J, Xu Z, Shan M et al (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci 448:81–92. doi:10.​1016/​j.​memsci.​2013.​07.​064 CrossRef
159.
go back to reference Hegab HM, ElMekawy A, Barclay TG et al (2015) Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl Mater Interfaces 7:18004–18016. doi:10.1021/acsami.5b04818 CrossRef Hegab HM, ElMekawy A, Barclay TG et al (2015) Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl Mater Interfaces 7:18004–18016. doi:10.​1021/​acsami.​5b04818 CrossRef
Metadata
Title
Antimicrobial Properties of Graphene Nanomaterials: Mechanisms and Applications
Authors
Adel Soroush
Douglas Rice
Md Saifur Rahaman
François Perreault
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-45639-3_10

Premium Partners