Skip to main content
Top

2018 | OriginalPaper | Chapter

Aorta Flow Analysis and Heart Valve Flow and Structure Analysis

Authors : Kenji Takizawa, Tayfun E. Tezduyar, Hiroaki Uchikawa, Takuya Terahara, Takafumi Sasaki, Kensuke Shiozaki, Ayaka Yoshida, Kenji Komiya, Gaku Inoue

Published in: Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present our computational methods for and results from aorta flow analysis and heart valve flow and structure analysis. In flow analysis, the core method is the space–time Variational Multiscale (ST-VMS) method. The other key methods are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The ST framework, in a general context, provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flows in the aorta and heart valve. The moving-mesh feature of the ST framework enables high-resolution computation near the valve leaflets. The ST-SI connects the sectors of meshes containing the leaflets, enabling a more effective mesh moving. The ST-TC enables moving-mesh computation even with the TC created by the contact between the leaflets. It deals with the contact while maintaining high-resolution representation near the leaflets. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the leaflet surfaces. It also enables dealing with leaflet–leaflet contact location change and contact sliding. The ST-IGA provides smoother representation of aorta and valve surfaces and increased accuracy in the flow solution. With the integration of the ST-IGA with the ST-SI and ST-TC, the element density in the narrow spaces near the contact areas is kept at a reasonable level. In structure analysis, we use a Kirchhoff–Love shell model, where we take the stretch in the third direction into account in calculating the curvature term. The computations presented demonstrate the scope and effectiveness of the methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, T. Ueda, and T.E. Tezduyar, “A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta”, in Y. Bazilevs and K. Takizawa, editors, Advances in Computational Fluid–Structure Interaction and Flow Simulation: New Methods and Challenging Computations, Modeling and Simulation in Science, Engineering and Technology, 379–386, Springer, 2016, ISBN 978-3-319-40825-5. H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, T. Ueda, and T.E. Tezduyar, “A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta”, in Y. Bazilevs and K. Takizawa, editors, Advances in Computational Fluid–Structure Interaction and Flow Simulation: New Methods and Challenging Computations, Modeling and Simulation in Science, Engineering and Technology, 379–386, Springer, 2016, ISBN 978-3-319-40825-5.
4.
go back to reference K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA)”, in P. Wriggers and T. Lenarz, editors, Biomedical Technology: Modeling, Experiments and Simulation, Lecture Notes in Applied and Computational Mechanics, 77–99, Springer, 2018, ISBN 978-3-319-59547-4. K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA)”, in P. Wriggers and T. Lenarz, editors, Biomedical Technology: Modeling, Experiments and Simulation, Lecture Notes in Applied and Computational Mechanics, 77–99, Springer, 2018, ISBN 978-3-319-59547-4.
18.
go back to reference A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.MathSciNetMATHCrossRef A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.MathSciNetMATHCrossRef
19.
go back to reference T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.MathSciNetMATHCrossRef T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.MathSciNetMATHCrossRef
20.
go back to reference T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.MATHCrossRef T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.MATHCrossRef
21.
go back to reference Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.MathSciNetMATHCrossRef Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.MathSciNetMATHCrossRef
22.
go back to reference Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.MathSciNetMATHCrossRef Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.MathSciNetMATHCrossRef
23.
go back to reference T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.MathSciNetMATHCrossRef T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.MathSciNetMATHCrossRef
24.
go back to reference Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.MathSciNetMATHCrossRef Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.MathSciNetMATHCrossRef
27.
go back to reference Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.MATHCrossRef Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.MATHCrossRef
31.
go back to reference Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.MathSciNetMATHCrossRef Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.MathSciNetMATHCrossRef
32.
go back to reference Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.MathSciNetMATHCrossRef Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.MathSciNetMATHCrossRef
33.
go back to reference M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.MathSciNetMATHCrossRef M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.MathSciNetMATHCrossRef
34.
go back to reference Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.MATHCrossRef Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.MATHCrossRef
35.
go back to reference M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.MATHCrossRef M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.MATHCrossRef
37.
go back to reference Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://doi.org/10.1002/fld.2400.MATHCrossRef Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://​doi.​org/​10.​1002/​fld.​2400.MATHCrossRef
38.
go back to reference Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.MATHCrossRef Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.MATHCrossRef
39.
go back to reference M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.MathSciNetMATHCrossRef M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.MathSciNetMATHCrossRef
40.
go back to reference Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.MathSciNetMATHCrossRef Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.MathSciNetMATHCrossRef
41.
go back to reference M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.CrossRef M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.CrossRef
42.
go back to reference A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.MathSciNetMATHCrossRef A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.MathSciNetMATHCrossRef
49.
go back to reference Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.CrossRef Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.CrossRef
50.
go back to reference Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.MathSciNetMATHCrossRef Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.MathSciNetMATHCrossRef
51.
go back to reference Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.MathSciNetMATHCrossRef Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.MathSciNetMATHCrossRef
52.
go back to reference Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.MathSciNetMATHCrossRef Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.MathSciNetMATHCrossRef
53.
go back to reference Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.MathSciNetMATHCrossRef Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.MathSciNetMATHCrossRef
54.
go back to reference Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.CrossRef Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.CrossRef
55.
go back to reference M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.MathSciNetCrossRef M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.MathSciNetCrossRef
60.
go back to reference M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.MATHCrossRef M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://​doi.​org/​10.​1007/​s00466-015-1166-x.MATHCrossRef
61.
go back to reference D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.MathSciNetMATHCrossRef D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.MathSciNetMATHCrossRef
62.
go back to reference I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.CrossRef I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.CrossRef
63.
go back to reference I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.CrossRef I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.CrossRef
65.
go back to reference M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://doi.org/10.1016/j.cma.2016.09.032.MathSciNetCrossRef M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://​doi.​org/​10.​1016/​j.​cma.​2016.​09.​032.MathSciNetCrossRef
93.
go back to reference Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “A general-purpose NURBS mesh generation method for complex geometries”, to appear in a special volume to be published by Springer, 2018. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “A general-purpose NURBS mesh generation method for complex geometries”, to appear in a special volume to be published by Springer, 2018.
94.
go back to reference T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation”, to appear in a special volume to be published by Springer, 2018. T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation”, to appear in a special volume to be published by Springer, 2018.
99.
go back to reference J. Kiendl, K.U. Bletzinger, J. Linhard, and R. Wüchner, “Isogeometric shell analysis with Kirchhoff–Love elements”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3902–3914.MathSciNetMATHCrossRef J. Kiendl, K.U. Bletzinger, J. Linhard, and R. Wüchner, “Isogeometric shell analysis with Kirchhoff–Love elements”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3902–3914.MathSciNetMATHCrossRef
100.
go back to reference J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger, “The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 2403–2416.MathSciNetMATHCrossRef J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger, “The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 2403–2416.MathSciNetMATHCrossRef
101.
go back to reference Y. Bazilevs, M.-C. Hsu, J. Kiendl, and D.J. Benson, “A computational procedure for pre-bending of wind turbine blades”, International Journal for Numerical Methods in Engineering, 89 (2012) 323–336.MATHCrossRef Y. Bazilevs, M.-C. Hsu, J. Kiendl, and D.J. Benson, “A computational procedure for pre-bending of wind turbine blades”, International Journal for Numerical Methods in Engineering, 89 (2012) 323–336.MATHCrossRef
102.
go back to reference J. Kiendl, M.-C. Hsu, M.C.H. Wu, and A. Reali, “Isogeometric Kirchhoff–Love shell formulations for general hyperelastic material”, Computer Methods in Applied Mechanics and Engineering, 291 (2015) 280–303.MathSciNetCrossRef J. Kiendl, M.-C. Hsu, M.C.H. Wu, and A. Reali, “Isogeometric Kirchhoff–Love shell formulations for general hyperelastic material”, Computer Methods in Applied Mechanics and Engineering, 291 (2015) 280–303.MathSciNetCrossRef
105.
go back to reference K. Takizawa, J. Christopher, T.E. Tezduyar, and S. Sathe, “Space–time finite element computation of arterial fluid–structure interactions with patient-specific data”, International Journal for Numerical Methods in Biomedical Engineering, 26 (2010) 101–116, https://doi.org/10.1002/cnm.1241.MATHCrossRef K. Takizawa, J. Christopher, T.E. Tezduyar, and S. Sathe, “Space–time finite element computation of arterial fluid–structure interactions with patient-specific data”, International Journal for Numerical Methods in Biomedical Engineering, 26 (2010) 101–116, https://​doi.​org/​10.​1002/​cnm.​1241.MATHCrossRef
108.
go back to reference K. Takizawa, C. Moorman, S. Wright, J. Purdue, T. McPhail, P.R. Chen, J. Warren, and T.E. Tezduyar, “Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms”, International Journal for Numerical Methods in Fluids, 65 (2011) 308–323, https://doi.org/10.1002/fld.2360.MATHCrossRef K. Takizawa, C. Moorman, S. Wright, J. Purdue, T. McPhail, P.R. Chen, J. Warren, and T.E. Tezduyar, “Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms”, International Journal for Numerical Methods in Fluids, 65 (2011) 308–323, https://​doi.​org/​10.​1002/​fld.​2360.MATHCrossRef
111.
go back to reference C.D. Murray, “The physiological principle of minimum work: I. the vascular system and the cost of blood volume”, Proceedings of the National Academy of Sciences of the United States of America, 12 (1926) 207–214.CrossRef C.D. Murray, “The physiological principle of minimum work: I. the vascular system and the cost of blood volume”, Proceedings of the National Academy of Sciences of the United States of America, 12 (1926) 207–214.CrossRef
124.
go back to reference A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://doi.org/10.1115/1.3062967.CrossRef A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://​doi.​org/​10.​1115/​1.​3062967.CrossRef
125.
134.
go back to reference M.F. Wheeler, “An elliptic collocation-finite element method with interior penalties”, SIAM Journal on Numerical Analysis, 15 (1978) 152–161.MathSciNetMATHCrossRef M.F. Wheeler, “An elliptic collocation-finite element method with interior penalties”, SIAM Journal on Numerical Analysis, 15 (1978) 152–161.MathSciNetMATHCrossRef
135.
go back to reference P. Houston, C. Schwab, and E. Suli, “Discontinuous hp-finite element methods for advection-diffusion reaction problems”, SIAM Journal on Numerical Analysis, 39 (2002) 2133–2163.MathSciNetMATHCrossRef P. Houston, C. Schwab, and E. Suli, “Discontinuous hp-finite element methods for advection-diffusion reaction problems”, SIAM Journal on Numerical Analysis, 39 (2002) 2133–2163.MathSciNetMATHCrossRef
Metadata
Title
Aorta Flow Analysis and Heart Valve Flow and Structure Analysis
Authors
Kenji Takizawa
Tayfun E. Tezduyar
Hiroaki Uchikawa
Takuya Terahara
Takafumi Sasaki
Kensuke Shiozaki
Ayaka Yoshida
Kenji Komiya
Gaku Inoue
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-96469-0_2

Premium Partners