Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

APADGCN: Adaptive Partial Attention Diffusion Graph Convolutional Network for Traffic Flow Forecasting

Authors : Bowen Zhang, Bohan Li, Jinzhan Wei, Hao Wen

Published in: Spatial Data and Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traffic flow forecasting is a core task of urban governance and plays a vital role in the development of ITS. Because of the complexity and uncertainty of traffic patterns, it is of great challenge to capture spatial-temporal correlations. Recent researches mainly focus on the pre-defined adjacency matrix based on prior knowledge as the basis of spatial-temporal correlation modeling, but the fixed graph structure cannot adequately describe the dependency between traffic sensors. To tackle this issue, a novel deep learning model framework is proposed in this paper: Adaptive Partial Attention Diffusion Graph Convolutional Network(APADGCN), which consists of three main parts: 1) the Multi-Component module that divides the historical traffic flow into recent, daily-periodic, and weekly-periodic, to capture the traffic patterns of different periodic; 2) the spatial correlation modeling which can dynamically capture node relationships and model spatial dependency, and enhance the aggregation ability of low-order information; 3) the temporal correlation modeling which models long-term time dependencies using convolution and gating. The final result is obtained by the weighted fusion of the results of the multi-components. We compared our APADGCN with various baseline models in the four real datasets from the Caltrans Performance Measurement System (PeMS). The experimental results show that the prediction accuracy of APADGCN is better than that of the baseline models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pang, X., Wang, C., Huang, G.: A short-term traffic flow forecasting method based on a three-layer k-nearest neighbor non-parametric regression algorithm. J. Transp. Technol. 6(4), 200–206 (2016) Pang, X., Wang, C., Huang, G.: A short-term traffic flow forecasting method based on a three-layer k-nearest neighbor non-parametric regression algorithm. J. Transp. Technol. 6(4), 200–206 (2016)
2.
go back to reference Laptev, N., Yosinski, J., Li, L.E., Smyl, S.: Time-series extreme event forecasting with neural networks at uber. In: International Conference on Machine Learning, vol. 34, pp. 1–5 (2017) Laptev, N., Yosinski, J., Li, L.E., Smyl, S.: Time-series extreme event forecasting with neural networks at uber. In: International Conference on Machine Learning, vol. 34, pp. 1–5 (2017)
4.
go back to reference Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceed. AAAI Conf. Artif. Intell. 33(01), 922–929 (2019) Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceed. AAAI Conf. Artif. Intell. 33(01), 922–929 (2019)
5.
go back to reference Bai, L., Yao, L., Kanhere, S.S., Yang, Z., Chu, J., Wang, X.: Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 29–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_3CrossRef Bai, L., Yao, L., Kanhere, S.S., Yang, Z., Chu, J., Wang, X.: Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 29–42. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-16145-3_​3CrossRef
6.
go back to reference Geng, X., et al.: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proceed. AAAI Conf. Artif. Intell. 33(01), 3656–3663 (2019) Geng, X., et al.: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proceed. AAAI Conf. Artif. Intell. 33(01), 3656–3663 (2019)
7.
go back to reference Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph waveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019) Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph waveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:​1906.​00121 (2019)
8.
go back to reference Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using box-Jenkins techniques (1997) Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using box-Jenkins techniques (1997)
9.
go back to reference Chien, S.I.-J., Kuchipudi, C.M.: Dynamic travel time prediction with real-time and historic data. J. Transp. Eng. 129(6), 608–616 (2003)CrossRef Chien, S.I.-J., Kuchipudi, C.M.: Dynamic travel time prediction with real-time and historic data. J. Transp. Eng. 129(6), 608–616 (2003)CrossRef
10.
go back to reference Nikovski, D., Nishiuma, N., Goto, Y., Kumazawa, H.: Univariate short-term prediction of road travel times. In Proceedings.: IEEE Intelligent Transportation Systems, vol. 2005, pp. 1074–1079 (2005). IEEE (2005) Nikovski, D., Nishiuma, N., Goto, Y., Kumazawa, H.: Univariate short-term prediction of road travel times. In Proceedings.: IEEE Intelligent Transportation Systems, vol. 2005, pp. 1074–1079 (2005). IEEE (2005)
11.
go back to reference Xiaoyu, H., Yisheng, W., Siyu, H.: Short-term traffic flow forecasting based on two-tier k-nearest neighbor algorithm. Procedia. Soc. Behav. Sci. 96, 2529–2536 (2013)CrossRef Xiaoyu, H., Yisheng, W., Siyu, H.: Short-term traffic flow forecasting based on two-tier k-nearest neighbor algorithm. Procedia. Soc. Behav. Sci. 96, 2529–2536 (2013)CrossRef
12.
go back to reference Li, Z., Ren, Q., Chen, L., Sui, X., Li, J.: Multi-hierarchical spatial-temporal graph convolutional networks for traffic flow forecasting. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 4913–4919. IEEE (2022) Li, Z., Ren, Q., Chen, L., Sui, X., Li, J.: Multi-hierarchical spatial-temporal graph convolutional networks for traffic flow forecasting. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 4913–4919. IEEE (2022)
13.
go back to reference Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C: Emerg. Technol. 54, 187–197 (2015)CrossRef Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C: Emerg. Technol. 54, 187–197 (2015)CrossRef
14.
go back to reference Cui, Z., Ke, R., Pu, Z., Wang, Y.: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C: Emerg. Technol. 118, 102674 (2020)CrossRef Cui, Z., Ke, R., Pu, Z., Wang, Y.: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C: Emerg. Technol. 118, 102674 (2020)CrossRef
15.
go back to reference Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017) Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)
16.
go back to reference Liu, M., Zeng, A., Xu, Z., Lai, Q., Xu, Q.: Time series is a special sequence: forecasting with sample convolution and interaction. arXiv preprint arXiv:2106.09305 (2021) Liu, M., Zeng, A., Xu, Z., Lai, Q., Xu, Q.: Time series is a special sequence: forecasting with sample convolution and interaction. arXiv preprint arXiv:​2106.​09305 (2021)
17.
go back to reference Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)CrossRef Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)CrossRef
18.
go back to reference Zhang, J., Zheng, Y., Qi, D.: Deep Spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-first AAAI Conference on Artificial Intelligence (2017) Zhang, J., Zheng, Y., Qi, D.: Deep Spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)
19.
go back to reference Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016) Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:​1612.​01022 (2016)
20.
go back to reference Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017) Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:​1707.​01926 (2017)
21.
go back to reference Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, no. 2005, pp. 729–734 (2005) Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, no. 2005, pp. 729–734 (2005)
22.
go back to reference Kong, X., Zhang, J., Wei, X., Xing, W., Lu, W.: Adaptive spatial-temporal graph attention networks for traffic flow forecasting. Appl. Intell. 52(4), 4300–4316 (2022)CrossRef Kong, X., Zhang, J., Wei, X., Xing, W., Lu, W.: Adaptive spatial-temporal graph attention networks for traffic flow forecasting. Appl. Intell. 52(4), 4300–4316 (2022)CrossRef
23.
go back to reference Zhang, C., et al.: Augmented multi-component recurrent graph convolutional network for traffic flow forecasting. ISPRS Int. J. Geo Inf. 11(2), 88 (2022)CrossRef Zhang, C., et al.: Augmented multi-component recurrent graph convolutional network for traffic flow forecasting. ISPRS Int. J. Geo Inf. 11(2), 88 (2022)CrossRef
24.
go back to reference Wang, Y., Jing, C., Xu, S., Guo, T.: Attention based spatiotemporal graph attention networks for traffic flow forecasting. Inf. Sci. 607, 869–883 (2022)CrossRef Wang, Y., Jing, C., Xu, S., Guo, T.: Attention based spatiotemporal graph attention networks for traffic flow forecasting. Inf. Sci. 607, 869–883 (2022)CrossRef
25.
go back to reference Zhang, W., Zhu, K., Zhang, S., Chen, Q., Xu, J.: Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting. Knowl.-Based Syst. 250, 109028 (2022)CrossRef Zhang, W., Zhu, K., Zhang, S., Chen, Q., Xu, J.: Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting. Knowl.-Based Syst. 250, 109028 (2022)CrossRef
26.
go back to reference Zhang, S., Guo, Y., Zhao, P., Zheng, C., Chen, X.: A graph-based temporal attention framework for multi-sensor traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 23(7), 7743–7758 (2021)CrossRef Zhang, S., Guo, Y., Zhao, P., Zheng, C., Chen, X.: A graph-based temporal attention framework for multi-sensor traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 23(7), 7743–7758 (2021)CrossRef
27.
go back to reference Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)MathSciNetCrossRef Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)MathSciNetCrossRef
28.
go back to reference Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013) Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:​1312.​6203 (2013)
29.
go back to reference Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016) Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
30.
go back to reference Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Networks 20(3), 498–511 (2009)CrossRef Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Networks 20(3), 498–511 (2009)CrossRef
31.
go back to reference Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:​1710.​10903 (2017)
32.
go back to reference Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015) Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)
33.
go back to reference Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: GeoMAN: multi-level attention networks for geo-sensory time series prediction. IJCAI 2018, 3428–3434 (2018) Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: GeoMAN: multi-level attention networks for geo-sensory time series prediction. IJCAI 2018, 3428–3434 (2018)
34.
go back to reference Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. Proceed. AAAI Conf. Artif. Intell. 34(01), 1234–1241 (2020) Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. Proceed. AAAI Conf. Artif. Intell. 34(01), 1234–1241 (2020)
37.
go back to reference Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)CrossRef Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)CrossRef
38.
go back to reference Qi, J., Zhao, Z., Tanin, E., Cui, T., Nassir, N., Sarvi, M.: A graph and attentive multi-path convolutional network for traffic prediction. IEEE Transactions on Knowledge and Data Engineering (2022) Qi, J., Zhao, Z., Tanin, E., Cui, T., Nassir, N., Sarvi, M.: A graph and attentive multi-path convolutional network for traffic prediction. IEEE Transactions on Knowledge and Data Engineering (2022)
39.
go back to reference Hamilton, J.D.: Time series analysis. Princeton University Press (2020) Hamilton, J.D.: Time series analysis. Princeton University Press (2020)
40.
go back to reference Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRef Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRef
41.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
42.
go back to reference Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014) Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
43.
go back to reference Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018) Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:​1803.​01271 (2018)
44.
go back to reference Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017) Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:​1709.​04875 (2017)
Metadata
Title
APADGCN: Adaptive Partial Attention Diffusion Graph Convolutional Network for Traffic Flow Forecasting
Authors
Bowen Zhang
Bohan Li
Jinzhan Wei
Hao Wen
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-32910-4_1

Premium Partner