Skip to main content
Top
Published in: Journal of Polymer Research 2/2013

01-02-2013 | Original Paper

Apparent kinetics of nonisothermal high temperature oxidative degradation of ethylene homopolymers: effects of residual catalyst surface chemistry and structure

Authors: Muhammad Atiqullah, Mohammad M. Hossain, Syed Masiur Rahman, Khurshid Alam, Hasan A. Al-Muallem, Abdulrahman F. Alharbi, Ikram Hussain, Anwar Hossaen

Published in: Journal of Polymer Research | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of two supported residual catalysts—one Ziegler-Natta and another metallocene—on the nonisothermal thermooxidative degradation of the resulting ethylene homopolymers were investigated using TGA experiments and kinetic modeling. The rigorous constitutive kinetic model (developed in this study), unlike the analytical Horowitz and Metzger model, fitted very well to the entire TGA curve, without distribution of activation energy E a , for n (overall degradation order) = 1 for both polymers. Neither n nor E a varied as a function of fractional weight loss of the polymer. Hence, the proposed unified molecular level concept of surface chemistry and structure of the residual catalysts held all through the degradation process. The above feature of n and E a also indicates the suitability of the model formulation and the effectiveness of the parameter-estimation algorithm. Random polymer chain scission, with the cleavage of the −C−C− and the −O−O− (hydroperoxide) bonds, prevailed. The types of residual catalyst surface chemistry and structure varied the bond cleavage process. The metallocene Zr residual catalyst caused more thermooxidative degradation in MetCat HomoPE than what the Ti one did in Z-N HomoPE. The rigorous constitutive model-predicted apparent kinetic energy E a , and frequency factor Z also support this finding. The proposed degradation mechanism suggests that the Zr residual catalyst more (i) decreased the activation energy required to decompose the −C−C− and the −O−O− bonds, and (ii) eliminated β-hydrogen (by the carbonyl functionalities) from the polymer chains. These findings were attributed to the differences in surface chemistry and structure of the residual catalysts. Therefore, the current study presents a rigorous constitutive kinetic model that duly illustrates the influence of the characteristic surface chemistry and structure of the residual catalysts on the high temperature oxidative degradation of polyethylenes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Webb SW, Weist EL, Chiovetta MG, Laurence RL, Conner WC (1991) The Can J Chem Eng 69:665–681CrossRef Webb SW, Weist EL, Chiovetta MG, Laurence RL, Conner WC (1991) The Can J Chem Eng 69:665–681CrossRef
3.
4.
go back to reference Martino AD, Broyer JP, Spitz R, Weickert G, McKenna TFL (2005) Macromol Rapid Commun 26:215–220CrossRef Martino AD, Broyer JP, Spitz R, Weickert G, McKenna TFL (2005) Macromol Rapid Commun 26:215–220CrossRef
5.
go back to reference Martino AD, Weickert G, Sidoroff F, McKenna TFL (2007) Macromol React Eng 1:38–352 Martino AD, Weickert G, Sidoroff F, McKenna TFL (2007) Macromol React Eng 1:38–352
6.
go back to reference Silva FM, Broyer JP, Novat C, Lima EL, Pinto JC, McKenna TFL (2005) Macromol React Eng 16:1846–1853 Silva FM, Broyer JP, Novat C, Lima EL, Pinto JC, McKenna TFL (2005) Macromol React Eng 16:1846–1853
7.
go back to reference Atiqullah M, Akhtar MN, Moman A, Abu-Raqabah AH, Palackal SJ, Al-Muallem HA, Hamed OM (2007) Appl Catal A: General 320:134–143CrossRef Atiqullah M, Akhtar MN, Moman A, Abu-Raqabah AH, Palackal SJ, Al-Muallem HA, Hamed OM (2007) Appl Catal A: General 320:134–143CrossRef
8.
go back to reference Atiqullah M, Moman A, Akhtar MN, Al-Muallem HA, Abu-Raqabah AH, Neaz A (2007) J Appl Poly Sci 106:3149–3157CrossRef Atiqullah M, Moman A, Akhtar MN, Al-Muallem HA, Abu-Raqabah AH, Neaz A (2007) J Appl Poly Sci 106:3149–3157CrossRef
9.
go back to reference Dompazis G, Kanellopoulos V, Chatzidoukas C, Kiparissides C (2005) Proceedings, 3rd European Conference on the Reaction Engineering of Polyolefins, Lyon, June 20–24, France. Dompazis G, Kanellopoulos V, Chatzidoukas C, Kiparissides C (2005) Proceedings, 3rd European Conference on the Reaction Engineering of Polyolefins, Lyon, June 20–24, France.
10.
go back to reference Lee I-M, Gauthier WJ, Ball JM, Iyengar B, Collins S (1992) Organometallics 11:2115–2122CrossRef Lee I-M, Gauthier WJ, Ball JM, Iyengar B, Collins S (1992) Organometallics 11:2115–2122CrossRef
11.
12.
go back to reference Atiqullah M, Akhtar MN, Faiz M, Moman A, Abu-Raqabah AH, Khan JH, Wazeer MI (2006) Surf Inter Anal 38:1319–1327CrossRef Atiqullah M, Akhtar MN, Faiz M, Moman A, Abu-Raqabah AH, Khan JH, Wazeer MI (2006) Surf Inter Anal 38:1319–1327CrossRef
13.
go back to reference Kong Y, Yi J, Dou X, Liu W, Huang Q, Gao K, Yang W (2010) Polymer 51:3859–3866CrossRef Kong Y, Yi J, Dou X, Liu W, Huang Q, Gao K, Yang W (2010) Polymer 51:3859–3866CrossRef
15.
go back to reference Marcilla A, Hernández MDR, García ÁN (2007) J Anal Appl Pyrol 79:424–432CrossRef Marcilla A, Hernández MDR, García ÁN (2007) J Anal Appl Pyrol 79:424–432CrossRef
16.
go back to reference Fernandes VJ, Araujo AS, Fernandes GJT (1999) J Ther Anal Calorim 56:275–285CrossRef Fernandes VJ, Araujo AS, Fernandes GJT (1999) J Ther Anal Calorim 56:275–285CrossRef
17.
18.
go back to reference Uemichi Y, Kashiwaya Y, Tsukidate M, Ayame A, Kanoh H (1983) Bull Chem Soc Jpn 56:2768–2773CrossRef Uemichi Y, Kashiwaya Y, Tsukidate M, Ayame A, Kanoh H (1983) Bull Chem Soc Jpn 56:2768–2773CrossRef
19.
go back to reference Ben GS, Goss H, Nakatani, Graeme A, Georgeb M, Terano (2003) Polym Degrad Stab 82:119–126CrossRef Ben GS, Goss H, Nakatani, Graeme A, Georgeb M, Terano (2003) Polym Degrad Stab 82:119–126CrossRef
21.
go back to reference Elmer P (1996) Atomic absorption spectroscopy: Analytical Methods: Manual Number 0303–1052, Release D. Norwalk, The Perkin Elmer Corporation, Connecticut Elmer P (1996) Atomic absorption spectroscopy: Analytical Methods: Manual Number 0303–1052, Release D. Norwalk, The Perkin Elmer Corporation, Connecticut
22.
23.
go back to reference Van Krevelen DW, van Herden C, Huntjens FJ (1951) Fuel 30:253 Van Krevelen DW, van Herden C, Huntjens FJ (1951) Fuel 30:253
25.
go back to reference Gonzales J, Albano C, Sciamanna R, Ichazo M, Rosales C, Martinez J (2000) Polym Degrad Stab 68:9–19CrossRef Gonzales J, Albano C, Sciamanna R, Ichazo M, Rosales C, Martinez J (2000) Polym Degrad Stab 68:9–19CrossRef
26.
30.
go back to reference Mampel KL (1940) Zeitschrift für Physikalische Chemie 187:235–249 Mampel KL (1940) Zeitschrift für Physikalische Chemie 187:235–249
34.
go back to reference Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Prentice Hall International, NJ Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Prentice Hall International, NJ
36.
37.
go back to reference Pakkanen TT, Vahasarja E, Pakkanen TA, Iiskola E, Sormunen P (1990) J Catal 121:248–261CrossRef Pakkanen TT, Vahasarja E, Pakkanen TA, Iiskola E, Sormunen P (1990) J Catal 121:248–261CrossRef
38.
go back to reference Nowlin TE, Mink RI, Lo FY, Kumar T (1991) J Polym Sci: Part A Polym Chem 29:1167–1173CrossRef Nowlin TE, Mink RI, Lo FY, Kumar T (1991) J Polym Sci: Part A Polym Chem 29:1167–1173CrossRef
39.
go back to reference Kratochvíla J, Kadlc Z, Kazda A, Salajka Z (1992) J Non-Crystalline Solids 143:14–20CrossRef Kratochvíla J, Kadlc Z, Kazda A, Salajka Z (1992) J Non-Crystalline Solids 143:14–20CrossRef
40.
go back to reference Kissin YV, Mink RI, Brandolini AJ, Nowlin TE (2009) J Polym Sci Part A: Polym Chem 47:3271–3285CrossRef Kissin YV, Mink RI, Brandolini AJ, Nowlin TE (2009) J Polym Sci Part A: Polym Chem 47:3271–3285CrossRef
41.
42.
43.
go back to reference Blitz JP, Diebel RE, Deakyne CA, Christensen JM, Gun’ko VM (2005) J Phy Chem 109:5667–5677 Blitz JP, Diebel RE, Deakyne CA, Christensen JM, Gun’ko VM (2005) J Phy Chem 109:5667–5677
44.
46.
go back to reference Stukalov DV, Zakharov VA (2009) J Phy Chem 113:21376–21382 Stukalov DV, Zakharov VA (2009) J Phy Chem 113:21376–21382
47.
go back to reference Hussain I, Atiqullah M, Fazal A, Alam K, Hossaen A (2010) Polym Degrad Stab 95:2289–2299CrossRef Hussain I, Atiqullah M, Fazal A, Alam K, Hossaen A (2010) Polym Degrad Stab 95:2289–2299CrossRef
48.
go back to reference Chirinos-Padrón AJ, Hernández PH, Suárez FA (1988) Polym Degrad Stab 20:237–255CrossRef Chirinos-Padrón AJ, Hernández PH, Suárez FA (1988) Polym Degrad Stab 20:237–255CrossRef
50.
go back to reference Hoáng EM, Allen NS, Liauw CM, Fontán E, Lafuente P (2006) Polymer Polym Degrad Stab 91:1356–1362CrossRef Hoáng EM, Allen NS, Liauw CM, Fontán E, Lafuente P (2006) Polymer Polym Degrad Stab 91:1356–1362CrossRef
51.
52.
go back to reference Scheirs J, Bigger SW, Billingham NC (1992) J Polym Sci Part A: Polym Chem 30:1873–1889CrossRef Scheirs J, Bigger SW, Billingham NC (1992) J Polym Sci Part A: Polym Chem 30:1873–1889CrossRef
54.
go back to reference Mucha M (1976) J Polym Sci Sym. Series 57:25–31 Mucha M (1976) J Polym Sci Sym. Series 57:25–31
55.
go back to reference Westerhout RWJ, Waanders J, Kuipers JAM, van Swaaij WPM (1997) Ind Eng Chem Res 36:1955–1964CrossRef Westerhout RWJ, Waanders J, Kuipers JAM, van Swaaij WPM (1997) Ind Eng Chem Res 36:1955–1964CrossRef
56.
go back to reference Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) J Anal Appl Pyrol 48:93–109CrossRef Bockhorn H, Hornung A, Hornung U, Schawaller D (1999) J Anal Appl Pyrol 48:93–109CrossRef
58.
go back to reference Reich L, Stivala SS (1971) Elements of polymer degradation. McGraw-Hill, New York Reich L, Stivala SS (1971) Elements of polymer degradation. McGraw-Hill, New York
59.
60.
go back to reference Corrales T, Catalina F, Peinado C, Allen AS, Fontan E (2002) J Photochem Photobiol A: Chem 147:213–224CrossRef Corrales T, Catalina F, Peinado C, Allen AS, Fontan E (2002) J Photochem Photobiol A: Chem 147:213–224CrossRef
61.
go back to reference Doruker P, Wang Y, Mattice WL (2001) Comp Theoretical Polym Sci 11:155–166CrossRef Doruker P, Wang Y, Mattice WL (2001) Comp Theoretical Polym Sci 11:155–166CrossRef
68.
go back to reference Zweifel H, Maier RD, Schiller M (2009) Plastics Additives Handbook. Hanser Verlag, Germany Zweifel H, Maier RD, Schiller M (2009) Plastics Additives Handbook. Hanser Verlag, Germany
70.
go back to reference Lee EO, Kim CY (1980) Polymer Korea 4:405–412 Lee EO, Kim CY (1980) Polymer Korea 4:405–412
71.
go back to reference Rychly J, Matisova-Rychla L, Csmorova K, Achimsky L, Audouin L, Tcharkhtchi A, Verdu J (1997) Polym Degrad Stab 58:269–274CrossRef Rychly J, Matisova-Rychla L, Csmorova K, Achimsky L, Audouin L, Tcharkhtchi A, Verdu J (1997) Polym Degrad Stab 58:269–274CrossRef
72.
go back to reference Reich L, Stivala SS (1969) Autoxidation of hydrocarbons and polyolefins. M. Dekker, New York Reich L, Stivala SS (1969) Autoxidation of hydrocarbons and polyolefins. M. Dekker, New York
73.
go back to reference Roy PK, Surekha P, Raman R, Rajagopal C (2009) Polym Degrad Stab 94:1033–1039CrossRef Roy PK, Surekha P, Raman R, Rajagopal C (2009) Polym Degrad Stab 94:1033–1039CrossRef
75.
Metadata
Title
Apparent kinetics of nonisothermal high temperature oxidative degradation of ethylene homopolymers: effects of residual catalyst surface chemistry and structure
Authors
Muhammad Atiqullah
Mohammad M. Hossain
Syed Masiur Rahman
Khurshid Alam
Hasan A. Al-Muallem
Abdulrahman F. Alharbi
Ikram Hussain
Anwar Hossaen
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2013
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-012-0056-6

Other articles of this Issue 2/2013

Journal of Polymer Research 2/2013 Go to the issue

Premium Partners